Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Building Regulatory Confidence with Human-in-the-Loop AI in Paperless GMP Validation

    Manaliben Amin*

    Journal on Artificial Intelligence, Vol.8, pp. 1-18, 2026, DOI:10.32604/jai.2026.073895 - 07 January 2026

    Abstract Artificial intelligence (AI) is steadily making its way into pharmaceutical validation, where it promises faster documentation, smarter testing strategies, and better handling of deviations. These gains are attractive, but in a regulated environment speed is never enough. Regulators want assurance that every system is reliable, that decisions are explainable, and that human accountability remains central. This paper sets out a Human-in-the-Loop (HITL) AI approach for Computer System Validation (CSV) and Computer Software Assurance (CSA). It relies on explainable AI (XAI) tools but keeps structured human review in place, so automation can be used without creating… More >

  • Open Access

    ARTICLE

    MultiAgent-CoT: A Multi-Agent Chain-of-Thought Reasoning Model for Robust Multimodal Dialogue Understanding

    Ans D. Alghamdi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-35, 2026, DOI:10.32604/cmc.2025.071210 - 09 December 2025

    Abstract Multimodal dialogue systems often fail to maintain coherent reasoning over extended conversations and suffer from hallucination due to limited context modeling capabilities. Current approaches struggle with cross-modal alignment, temporal consistency, and robust handling of noisy or incomplete inputs across multiple modalities. We propose MultiAgent-Chain of Thought (CoT), a novel multi-agent chain-of-thought reasoning framework where specialized agents for text, vision, and speech modalities collaboratively construct shared reasoning traces through inter-agent message passing and consensus voting mechanisms. Our architecture incorporates self-reflection modules, conflict resolution protocols, and dynamic rationale alignment to enhance consistency, factual accuracy, and user engagement. More >

  • Open Access

    ARTICLE

    Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks

    Zeeshan Ali Haider1, Inam Ullah2,*, Ahmad Abu Shareha3, Rashid Nasimov4, Sufyan Ali Memon5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071042 - 10 November 2025

    Abstract The advent of sixth-generation (6G) networks introduces unprecedented challenges in achieving seamless connectivity, ultra-low latency, and efficient resource management in highly dynamic environments. Although fifth-generation (5G) networks transformed mobile broadband and machine-type communications at massive scales, their properties of scaling, interference management, and latency remain a limitation in dense high mobility settings. To overcome these limitations, artificial intelligence (AI) and unmanned aerial vehicles (UAVs) have emerged as potential solutions to develop versatile, dynamic, and energy-efficient communication systems. The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning (CoRL) to manage an autonomous network.… More >

  • Open Access

    REVIEW

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

    Somayah Albaradei1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2937-2970, 2025, DOI:10.32604/cmes.2025.072584 - 23 December 2025

    Abstract Cancer deaths and new cases worldwide are projected to rise by 47% by 2040, with transitioning countries experiencing an even higher increase of up to 95%. Tumor severity is profoundly influenced by the timing, accuracy, and stage of diagnosis, which directly impacts clinical decision-making. Various biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, contribute to cancer development. The emergence of multi-omics technologies has transformed cancer research by revealing molecular alterations across multiple biological layers. This integrative approach supports the notion that cancer is fundamentally driven by such alterations, enabling the discovery of molecular signatures… More > Graphic Abstract

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

  • Open Access

    ARTICLE

    AI-Based Power Distribution Optimization in Hyperscale Data Centers

    Chirag Devendrakumar Parikh*

    Journal on Artificial Intelligence, Vol.7, pp. 571-584, 2025, DOI:10.32604/jai.2025.073765 - 01 December 2025

    Abstract With the increasing complexity and scale of hyperscale data centers, the requirement for intelligent, real-time power delivery has never been more critical to ensure uptime, energy efficiency, and sustainability. Those techniques are typically static, reactive (since CPU and workload scaling is applied to performance events that occur after a request has been submitted, and is thus can be classified as a reactive response.), and require manual operation, and cannot cope with the dynamic nature of the workloads, the distributed architectures as well as the non-uniform energy sources in today’s data centers. In this paper, we… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

    Kinzah Noor1, Agbotiname Lucky Imoize2,*, Michael Adedosu Adelabu3, Cheng-Chi Lee4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1575-1664, 2025, DOI:10.32604/cmes.2025.073200 - 26 November 2025

    Abstract The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern… More > Graphic Abstract

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

  • Open Access

    REVIEW

    Deep Learning in Medical Image Analysis: A Comprehensive Review of Algorithms, Trends, Applications, and Challenges

    Dawa Chyophel Lepcha1,*, Bhawna Goyal2,3, Ayush Dogra4, Ahmed Alkhayyat5, Prabhat Kumar Sahu6, Aaliya Ali7, Vinay Kukreja4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1487-1573, 2025, DOI:10.32604/cmes.2025.070964 - 26 November 2025

    Abstract Medical image analysis has become a cornerstone of modern healthcare, driven by the exponential growth of data from imaging modalities such as MRI, CT, PET, ultrasound, and X-ray. Traditional machine learning methods have made early contributions; however, recent advancements in deep learning (DL) have revolutionized the field, offering state-of-the-art performance in image classification, segmentation, detection, fusion, registration, and enhancement. This comprehensive review presents an in-depth analysis of deep learning methodologies applied across medical image analysis tasks, highlighting both foundational models and recent innovations. The article begins by introducing conventional techniques and their limitations, setting the… More >

  • Open Access

    REVIEW

    Integrating AI, Blockchain, and Edge Computing for Zero-Trust IoT Security: A Comprehensive Review of Advanced Cybersecurity Framework

    Inam Ullah Khan1, Fida Muhammad Khan1,*, Zeeshan Ali Haider1, Fahad Alturise2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4307-4344, 2025, DOI:10.32604/cmc.2025.070189 - 23 October 2025

    Abstract The rapid expansion of the Internet of Things (IoT) has introduced significant security challenges due to the scale, complexity, and heterogeneity of interconnected devices. The current traditional centralized security models are deemed irrelevant in dealing with these threats, especially in decentralized applications where the IoT devices may at times operate on minimal resources. The emergence of new technologies, including Artificial Intelligence (AI), blockchain, edge computing, and Zero-Trust-Architecture (ZTA), is offering potential solutions as it helps with additional threat detection, data integrity, and system resilience in real-time. AI offers sophisticated anomaly detection and prediction analytics, and… More >

  • Open Access

    ARTICLE

    Analysis and Prediction of Real-Time Memory and Processor Usage Using Artificial Intelligence (AI)

    Kadriye Simsek Alan*, Ayca Durgut, Helin Doga Demirel

    Journal on Artificial Intelligence, Vol.7, pp. 397-415, 2025, DOI:10.32604/jai.2025.071133 - 20 October 2025

    Abstract Efficient utilization of processor and memory resources is essential for sustaining performance and energy efficiency in modern computing infrastructures. While earlier research has emphasized CPU utilization forecasting, joint prediction of CPU and memory usage under real workload conditions remains underexplored. This study introduces a machine learning–based framework for real-time prediction of CPU and RAM utilization using the Google Cluster Trace 2019 v3 dataset. The framework combines Extreme Gradient Boosting (XGBoost) with a MultiOutputRegressor (MOR) to capture nonlinear interactions across multiple resource dimensions, supported by a leakage-safe imputation strategy that prevents bias from missing values. Nested… More >

  • Open Access

    ARTICLE

    AI-Integrated Feature Selection of Intrusion Detection for Both SDN and Traditional Network Architectures Using an Improved Crayfish Optimization Algorithm

    Hui Xu, Wei Huang*, Longtan Bai

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3053-3073, 2025, DOI:10.32604/cmc.2025.064930 - 03 July 2025

    Abstract With the birth of Software-Defined Networking (SDN), integration of both SDN and traditional architectures becomes the development trend of computer networks. Network intrusion detection faces challenges in dealing with complex attacks in SDN environments, thus to address the network security issues from the viewpoint of Artificial Intelligence (AI), this paper introduces the Crayfish Optimization Algorithm (COA) to the field of intrusion detection for both SDN and traditional network architectures, and based on the characteristics of the original COA, an Improved Crayfish Optimization Algorithm (ICOA) is proposed by integrating strategies of elite reverse learning, Levy flight,… More >

Displaying 1-10 on page 1 of 31. Per Page