Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access


    Aeroelastic Optimization of the High Aspect Ratio Wing with Aileron

    Mohammad Ghalandari1, Ibrahim Mahariq2, Farhad Ghadak3, Oussama Accouche2, Fahd Jarad4,5,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5569-5581, 2022, DOI:10.32604/cmc.2022.020884

    Abstract In aircraft wings, aileron mass parameter presents a tremendous effect on the velocity and frequency of the flutter problem. For that purpose, we present the optimization of a composite design wing with an aileron, using machine-learning approach. Mass properties and its distribution have a great influence on the multi-variate optimization procedure, based on speed and frequency of flutter. First, flutter speed was obtained to estimate aileron impact. Additionally mass-equilibrated and other features were investigated. It can deduced that changing the position and mass properties of the aileron are tangible following the speed and frequency of the wing flutter. Based on… More >

  • Open Access


    Influence of Aspect Ratio on Rolling Shear Properties of Fast-Grown Small Diameter Eucalyptus Lumber

    Tao Gui1, Shichen Cai1, Zhiqiang Wang1,*, Jianhui Zhou2,*

    Journal of Renewable Materials, Vol.8, No.9, pp. 1053-1066, 2020, DOI:10.32604/jrm.2020.011645

    Abstract Eucalyptus is a major fast-grown species in South China, which has the potential for producing structural wood products such as cross-laminated timber (CLT). Aspect ratio (board width vs. board thickness) of eucalyptus lumbers is small due to the small diameter of fast-grown eucalyptus wood. To evaluate its rolling shear modulus and strength for potential CLT applications, three-layer hybrid CLT shear block specimens with different aspect ratios (2,4,6), were tested by planar shear test method. Digital image correlation (DIC) was employed to measure the rolling shear strain distribution and development during the planar shear tests. The mean values of rolling shear… More >

  • Open Access


    Numerical Simulation of a New 3D Isolation System Designed for a Facility with Large Aspect Ratio

    Ying Zhou1,*, Peng Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 759-777, 2019, DOI:10.32604/cmes.2019.04383

    Abstract This paper proposes a novel three-dimensional (3D) isolation system for facilities and presents the numerical simulation approach for the isolated system under earthquake excitations and impact effect using the OpenSees (Open System for Earthquake Engineering Simulation) software frame work. The 3D isolators combine the quasi-zero stiffness (QZS) system in the vertical direction and lead rubber bearing in the horizontal direction. Considering the large aspect ratio of the isolated facility, linear viscous dampers are designed in the vertical direction to diminish the overturning effect. The vertical QZS isolation system is characterized by a cubic force-displacement relation, thus, no elements or materials… More >

  • Open Access


    2D Mixed Convection Viscous Incompressible Flows with Velocity-Vorticity Variables

    Alfredo Nicolás1, Blanca Bermúdez2

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 163-178, 2011, DOI:10.32604/cmes.2011.082.163

    Abstract Mixed convection viscous incompressible fluid flows, under a gravitational system, in rectangular cavities are reported using the unsteady Boussinessq approximation in velocity-vorticity variables. The results are obtained using a numerical method based on a fixed point iterative process to solve the nonlinear elliptic system that results after time discretization; the iterative process leads to the solution of uncoupled, well-conditioned, symmetric linear elliptic problems for which efficient solvers exist regardless of the space discretization. Results with different aspect ratios A up to Grashof numbers Gr = 100000 and Reynolds numbers Re = 1000 for the lid driven cavity problem are reported.… More >

  • Open Access


    Effects of the Rayleigh Number and the Aspect Ratio on 2D Natural Convection Flows

    Alfredo Nicolás1, Blanca Bermúdez2, Elsa Báez3

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.1, pp. 83-106, 2009, DOI:10.3970/cmes.2009.048.083

    Abstract Numerical results of natural convection flows in two-dimensional cavities, filled with air, are presented to study the effects on the characteristics of the flows as some parameters vary: the Rayleigh number Ra and the aspect ratio A of the cavity. This kind of thermal flows may be modeled by the unsteady Boussinesq approximation in stream function-vorticity variables. The results are obtained with a simple numerical scheme, previously reported for isothermal/mixed convection flows, based mainly on a fixed point iterative process applied to the non-linear elliptic system that results after time discretization. The evolution of the flows, mainly flows converging to… More >

  • Open Access


    Adaptive 3D finite elements with high aspect ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage

    Jacek Narski1,2, Marco Picasso1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.1, pp. 49-64, 2007, DOI:10.3970/fdmp.2007.003.049

    Abstract An adaptive phase field model for the solidification of binary alloys in three space dimensions is presented. The fluid flow in the liquid due to different liquid/solid densities is taken into account. The unknowns are the phase field, the alloy concentration and the velocity/pressure in the liquid. Continuous, piecewise linear finite elements are used for the space discretization, a semi-implicit scheme is used for time discretization. An adaptive method allows the number of degrees of freedom to be reduced, the mesh tetrahedrons having high aspect ratio whenever needed. Numerical results show that our method is effective and allows to perform… More >

Displaying 11-20 on page 2 of 16. Per Page