Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (548)
  • Open Access

    ARTICLE

    ResMHA-Net: Enhancing Glioma Segmentation and Survival Prediction Using a Novel Deep Learning Framework

    Novsheena Rasool1,*, Javaid Iqbal Bhat1, Najib Ben Aoun2,3, Abdullah Alharthi4, Niyaz Ahmad Wani5, Vikram Chopra6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 885-909, 2024, DOI:10.32604/cmc.2024.055900 - 15 October 2024

    Abstract Gliomas are aggressive brain tumors known for their heterogeneity, unclear borders, and diverse locations on Magnetic Resonance Imaging (MRI) scans. These factors present significant challenges for MRI-based segmentation, a crucial step for effective treatment planning and monitoring of glioma progression. This study proposes a novel deep learning framework, ResNet Multi-Head Attention U-Net (ResMHA-Net), to address these challenges and enhance glioma segmentation accuracy. ResMHA-Net leverages the strengths of both residual blocks from the ResNet architecture and multi-head attention mechanisms. This powerful combination empowers the network to prioritize informative regions within the 3D MRI data and capture… More >

  • Open Access

    ARTICLE

    Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network

    Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,*, Jinqian Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1641-1665, 2024, DOI:10.32604/cmc.2024.055802 - 15 October 2024

    Abstract For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism (GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the impact of faults by simplified… More >

  • Open Access

    ARTICLE

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

    Kelan Ren, Facheng Yan, Honghua Chen, Wen Jiang, Bin Wei, Mingshu Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 789-807, 2024, DOI:10.32604/cmc.2024.055624 - 15 October 2024

    Abstract The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns. Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures. This paper focuses on effectively mining and utilizing sentiment-semantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network (SentiHAN) for cross-target stance detection. SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various… More > Graphic Abstract

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

  • Open Access

    ARTICLE

    Efficient User Identity Linkage Based on Aligned Multimodal Features and Temporal Correlation

    Jiaqi Gao1, Kangfeng Zheng1,*, Xiujuan Wang2, Chunhua Wu1, Bin Wu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 251-270, 2024, DOI:10.32604/cmc.2024.055560 - 15 October 2024

    Abstract User identity linkage (UIL) refers to identifying user accounts belonging to the same identity across different social media platforms. Most of the current research is based on text analysis, which fails to fully explore the rich image resources generated by users, and the existing attempts touch on the multimodal domain, but still face the challenge of semantic differences between text and images. Given this, we investigate the UIL task across different social media platforms based on multimodal user-generated contents (UGCs). We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation… More >

  • Open Access

    ARTICLE

    An Aerial Target Recognition Algorithm Based on Self-Attention and LSTM

    Futai Liang1,2, Xin Chen1,*, Song He1, Zihao Song1, Hao Lu3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1101-1121, 2024, DOI:10.32604/cmc.2024.055326 - 15 October 2024

    Abstract In the application of aerial target recognition, on the one hand, the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise. On the other hand, it is difficult to apply machine learning methods to improve the intelligence and recognition effect due to few or no actual measurement samples. Aiming at these problems, an aerial target recognition algorithm based on self-attention and Long Short-Term Memory Network (LSTM) is proposed. LSTM can effectively extract temporal dependencies. The attention mechanism calculates the weight of each input element and… More >

  • Open Access

    ARTICLE

    APSO-CNN-SE: An Adaptive Convolutional Neural Network Approach for IoT Intrusion Detection

    Yunfei Ban, Damin Zhang*, Qing He, Qianwen Shen

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 567-601, 2024, DOI:10.32604/cmc.2024.055007 - 15 October 2024

    Abstract The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things (IoT) networks. The proliferation of unknown attacks and related risks, such as zero-day attacks and Distributed Denial of Service (DDoS) attacks triggered by botnets, have resulted in information leakage and property damage. Therefore, developing an efficient and realistic intrusion detection system (IDS) is critical for ensuring IoT network security. In recent years, traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic, and the excellent performance of deep learning techniques,… More >

  • Open Access

    ARTICLE

    Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids

    Tong Zu, Fengyong Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1395-1417, 2024, DOI:10.32604/cmes.2024.055442 - 27 September 2024

    Abstract False data injection attack (FDIA) can affect the state estimation of the power grid by tampering with the measured value of the power grid data, and then destroying the stable operation of the smart grid. Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams. Data-driven features, however, cannot effectively capture the differences between noisy data and attack samples. As a result, slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks. To address this problem, this paper designs a… More >

  • Open Access

    ARTICLE

    Understanding the Link: Emotional Attention in Italian Families and Children’s Social Development

    Catalda Corvasce1, Juan Pedro Martínez-Ramón2,*, Francisco Manuel Morales-Rodríguez3, Lidia Pellicer-García4, Inmaculada Méndez2, Cecilia Ruiz-Esteban2

    International Journal of Mental Health Promotion, Vol.26, No.9, pp. 709-718, 2024, DOI:10.32604/ijmhp.2024.053599 - 20 September 2024

    Abstract Background: Emotional attention refers to the capacity to recognize and properly respond to one’s and others’ emotional states. On another note, family is a primary source of socialization that influences the development of various social skills. In another line, adolescence is a complex stage that has been associated with emotional difficulties that could be related to competences such as prosociability and inclusion. It is inferred that through the family context and the attention that is processed, a series of competencies are transmitted to the youngsters, but this relationship is still unclear. For this reason, the… More >

  • Open Access

    ARTICLE

    Pyramid Separable Channel Attention Network for Single Image Super-Resolution

    Congcong Ma1,3, Jiaqi Mi2, Wanlin Gao1,3, Sha Tao1,3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4687-4701, 2024, DOI:10.32604/cmc.2024.055803 - 12 September 2024

    Abstract Single Image Super-Resolution (SISR) technology aims to reconstruct a clear, high-resolution image with more information from an input low-resolution image that is blurry and contains less information. This technology has significant research value and is widely used in fields such as medical imaging, satellite image processing, and security surveillance. Despite significant progress in existing research, challenges remain in reconstructing clear and complex texture details, with issues such as edge blurring and artifacts still present. The visual perception effect still needs further enhancement. Therefore, this study proposes a Pyramid Separable Channel Attention Network (PSCAN) for the… More >

  • Open Access

    ARTICLE

    Enhancing Unsupervised Domain Adaptation for Person Re-Identification with the Minimal Transfer Cost Framework

    Sheng Xu1, Shixiong Xiang2, Feiyu Meng1, Qiang Wu1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4197-4218, 2024, DOI:10.32604/cmc.2024.055157 - 12 September 2024

    Abstract In Unsupervised Domain Adaptation (UDA) for person re-identification (re-ID), the primary challenge is reducing the distribution discrepancy between the source and target domains. This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain. Implicit construction is difficult due to the absence of intermediate state supervision, making smooth knowledge transfer from the source to the target domain a challenge. To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,… More >

Displaying 211-220 on page 22 of 548. Per Page