Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (189)
  • Open Access

    ARTICLE

    Infrared Small Target Detection Algorithm Based on ISTD-CenterNet

    Ning Li*, Shucai Huang, Daozhi Wei

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3511-3531, 2023, DOI:10.32604/cmc.2023.045987 - 26 December 2023

    Abstract This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet (ISTD-CenterNet) network for detecting small infrared targets in complex environments. The method eliminates the need for an anchor frame, addressing the issues of low accuracy and slow speed. HRNet is used as the framework for feature extraction, and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects. A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire… More >

  • Open Access

    ARTICLE

    Enhancing Breast Cancer Diagnosis with Channel-Wise Attention Mechanisms in Deep Learning

    Muhammad Mumtaz Ali, Faiqa Maqsood, Shiqi Liu, Weiyan Hou, Liying Zhang, Zhenfei Wang*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2699-2714, 2023, DOI:10.32604/cmc.2023.045310 - 26 December 2023

    Abstract Breast cancer, particularly Invasive Ductal Carcinoma (IDC), is a primary global health concern predominantly affecting women. Early and precise diagnosis is crucial for effective treatment planning. Several AI-based techniques for IDC-level classification have been proposed in recent years. Processing speed, memory size, and accuracy can still be improved for better performance. Our study presents ECAM, an Enhanced Channel-Wise Attention Mechanism, using deep learning to analyze histopathological images of Breast Invasive Ductal Carcinoma (BIDC). The main objectives of our study are to enhance computational efficiency using a Separable CNN architecture, improve data representation through hierarchical feature… More >

  • Open Access

    ARTICLE

    One Dimensional Conv-BiLSTM Network with Attention Mechanism for IoT Intrusion Detection

    Bauyrzhan Omarov1,*, Zhuldyz Sailaukyzy2, Alfiya Bigaliyeva2, Adilzhan Kereyev3, Lyazat Naizabayeva4, Aigul Dautbayeva5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3765-3781, 2023, DOI:10.32604/cmc.2023.042469 - 26 December 2023

    Abstract In the face of escalating intricacy and heterogeneity within Internet of Things (IoT) network landscapes, the imperative for adept intrusion detection techniques has never been more pressing. This paper delineates a pioneering deep learning-based intrusion detection model: the One Dimensional Convolutional Neural Networks (1D-CNN) and Bidirectional Long Short-Term Memory (BiLSTM) Network (Conv-BiLSTM) augmented with an Attention Mechanism. The primary objective of this research is to engineer a sophisticated model proficient in discerning the nuanced patterns and temporal dependencies quintessential to IoT network traffic data, thereby facilitating the precise categorization of a myriad of intrusion types. Methodology:More >

  • Open Access

    ARTICLE

    Electromyogram Based Personal Recognition Using Attention Mechanism for IoT Security

    Jin Su Kim, Sungbum Pan*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1663-1678, 2023, DOI:10.32604/cmc.2023.043998 - 29 November 2023

    Abstract As Internet of Things (IoT) technology develops, integrating network functions into diverse equipment introduces new challenges, particularly in dealing with counterfeit issues. Over the past few decades, research efforts have focused on leveraging electromyogram (EMG) for personal recognition, aiming to address security concerns. However, obtaining consistent EMG signals from the same individual is inherently challenging, resulting in data irregularity issues and consequently decreasing the accuracy of personal recognition. Notably, conventional studies in EMG-based personal recognition have overlooked the issue of data irregularities. This paper proposes an innovative approach to personal recognition that combines a siamese… More >

  • Open Access

    ARTICLE

    DAAPS: A Deformable-Attention-Based Anchor-Free Person Search Model

    Xiaoqi Xin*, Dezhi Han, Mingming Cui

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2407-2425, 2023, DOI:10.32604/cmc.2023.042308 - 29 November 2023

    Abstract Person Search is a task involving pedestrian detection and person re-identification, aiming to retrieve person images matching a given objective attribute from a large-scale image library. The Person Search models need to understand and capture the detailed features and context information of smaller objects in the image more accurately and comprehensively. The current popular Person Search models, whether end-to-end or two-step, are based on anchor boxes. However, due to the limitations of the anchor itself, the model inevitably has some disadvantages, such as unbalance of positive and negative samples and redundant calculation, which will affect… More >

  • Open Access

    ARTICLE

    Liver Tumor Segmentation Based on Multi-Scale and Self-Attention Mechanism

    Fufang Li, Manlin Luo*, Ming Hu, Guobin Wang, Yan Chen

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2835-2850, 2023, DOI:10.32604/csse.2023.039765 - 09 November 2023

    Abstract Liver cancer has the second highest incidence rate among all types of malignant tumors, and currently, its diagnosis heavily depends on doctors’ manual labeling of CT scan images, a process that is time-consuming and susceptible to subjective errors. To address the aforementioned issues, we propose an automatic segmentation model for liver and tumors called Res2Swin Unet, which is based on the Unet architecture. The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation, respectively. Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections, while Swin Transformer captures long-range More >

  • Open Access

    ARTICLE

    AnimeNet: A Deep Learning Approach for Detecting Violence and Eroticism in Animated Content

    Yixin Tang*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 867-891, 2023, DOI:10.32604/cmc.2023.041550 - 31 October 2023

    Abstract Cartoons serve as significant sources of entertainment for children and adolescents. However, numerous animated videos contain unsuitable content, such as violence, eroticism, abuse, and vehicular accidents. Current content detection methods rely on manual inspection, which is resource-intensive, time-consuming, and not always reliable. Therefore, more efficient detection methods are necessary to safeguard young viewers. This paper addresses this significant problem by proposing a novel deep learning-based system, AnimeNet, designed to detect varying degrees of violent and erotic content in videos. AnimeNet utilizes a novel Convolutional Neural Network (CNN) model to extract image features effectively, classifying violent… More >

  • Open Access

    ARTICLE

    Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm

    P. Kalaiselvi1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1209-1226, 2023, DOI:10.32604/cmc.2023.040264 - 31 October 2023

    Abstract In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing… More >

  • Open Access

    ARTICLE

    Micro-Expression Recognition Based on Spatio-Temporal Feature Extraction of Key Regions

    Wenqiu Zhu1,2, Yongsheng Li1,2, Qiang Liu1,2,*, Zhigao Zeng1,2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1373-1392, 2023, DOI:10.32604/cmc.2023.037216 - 31 October 2023

    Abstract Aiming at the problems of short duration, low intensity, and difficult detection of micro-expressions (MEs), the global and local features of ME video frames are extracted by combining spatial feature extraction and temporal feature extraction. Based on traditional convolution neural network (CNN) and long short-term memory (LSTM), a recognition method combining global identification attention network (GIA), block identification attention network (BIA) and bi-directional long short-term memory (Bi-LSTM) is proposed. In the BIA, the ME video frame will be cropped, and the training will be carried out by cropping into 24 identification blocks (IBs), 10 IBs… More >

  • Open Access

    ARTICLE

    Time Highlighted Multi-Interest Network for Sequential Recommendation

    Jiayi Ma, Tianhao Sun*, Xiaodong Zhang

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3569-3584, 2023, DOI:10.32604/cmc.2023.040005 - 08 October 2023

    Abstract Sequential recommendation based on a multi-interest framework aims to analyze different aspects of interest based on historical interactions and generate predictions of a user’s potential interest in a list of items. Most existing methods only focus on what are the multiple interests behind interactions but neglect the evolution of user interests over time. To explore the impact of temporal dynamics on interest extraction, this paper explicitly models the timestamp with a multi-interest network and proposes a time-highlighted network to learn user preferences, which considers not only the interests at different moments but also the possible… More >

Displaying 101-110 on page 11 of 189. Per Page