Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    A Multi Criterion Fuzzy Based Energy Efficient Routing Protocol for Ad hoc Networks

    Geetha N., Sankar A.

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 711-719, 2018, DOI:10.1080/10798587.2017.1309003

    Abstract The routing protocol for an ad hoc network should be efficient in utilizing the available resources to prolong the network lifetime. A Multi Criterion Fuzzy based Energy Efficient Routing Protocol (MCFEER) for Ad hoc Networks selects the path on constraints like bandwidth, battery life, hop count and buffer occupancy. In the route discovery phase, fuzzy system is applied for optimal route selection by destination node leading to successful data transmission. Multiple stable paths are preserved in route cache for usage during the route maintenance phase. The results are competitive when compared with Power aware Energy More >

  • Open Access

    ARTICLE

    Storage-based Control Loop for AGC to Mitigate the Tie-lines Power Excursion between Areas

    Shengqi Zhang, Bei Yuan, Jianfeng Zhao

    Intelligent Automation & Soft Computing, Vol.25, No.4, pp. 745-753, 2019, DOI:10.31209/2019.100000078

    Abstract With the current trend of deregulation, more power exchange between GENCOs and DISCOs in different areas exists in the power system. To mitigate the unscheduled power exchange meets the common interests of GENCOs and DISCOs, and avoids the power over-loading on tie-lines. However, in the current control performance standards (CPS), frequency deviations have priority in the conventional automatic generation control (C-AGC). Thus, a storagebased tie-line control loop (STCL) on the basis of C-AGC (STCL-AGC) is proposed in this paper, which makes a better tradeoff in the recovery of the frequency deviations and the unscheduled power More >

  • Open Access

    ARTICLE

    A Numerical Investigation of the Thermal Performances of an Array of Heat Pipes for Battery Thermal Management

    Chaoyi Wan1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 343-356, 2019, DOI:10.32604/fdmp.2019.07812

    Abstract A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate, the coolant inlet temperature, and the input power. A comparison between numerical data and results available in the literature has demonstrated that our numerical procedure could successfully predict the heat transfer performance of the considered heat pipe cooling system for a battery. Specific indicators such as temperature, heat flux, and pressure loss were extracted to describe the characteristics of such a system. On the basis of the distributions More >

  • Open Access

    ARTICLE

    Optimization of the Heat Dissipation Structure and Temperature Distribution in an Electric Vehicle Power Battery

    Hongwang Zhao1, *, Yuanhua Chen1, Xiaogang Liu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 293-305, 2019, DOI:10.32604/fdmp.2019.08361

    Abstract In order to ensure that the lithium-ion battery pack keeps good working performance during the driving of electric vehicle, the heat generation mechanism and heat transfer characteristics of lithium-ion battery are analyzed. The power battery pack of electric vehicle is simulated by advanced vehicle simulator. The simulation results of battery pack current under typical cycle conditions and the heat source curve of lithium ion battery are obtained, which provide data for the simulation of heat source input of battery temperature field. On this basis, the flow field and temperature fiel d of the original… More >

  • Open Access

    ARTICLE

    A Hybrid Quantum-Classical Simulation Study on Stress-Dependence of Li Diffusivity in Graphite

    N. Ohba1,2, S. Ogata2, T. Tamura2, S. Yamakawa1, R. Asahi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.75, No.3&4, pp. 247-266, 2011, DOI:10.3970/cmes.2011.075.247

    Abstract Understanding the stress dependence of Li diffusivity in the Li-graphite intercalation compound (Li-GIC) that has been used in the Li-ion rechargeable battery as a negative electrode, is important to search for better conditions to improve the power performance of the battery. In the Li-GIC, the Li ion creates a long-ranged stress field around itself by expanding the inter-layer distance of the graphite. To take into account such a long-ranged stress field in the first-principles simulation of the Li diffusion, we develop the hybrid quantum (QM)-classical (CL) simulation code. In the hybrid code, the QM region… More >

  • Open Access

    ARTICLE

    Theoretical Study of Solvation Effect on Diffusion Coefficient of Li Ion in Propylene Carbonate

    Kentaro Doi1,2, Yuzuru Chikasako1, Satoyuki Kawano1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.1, pp. 1-26, 2015, DOI:10.3970/fdmp.2015.011.001

    Abstract Propylene carbonate (PC) and ethylene carbonate are known as good candidates of organic solvents to be used in Li-ion rechargeable batteries, since Li+ ions exhibit preferable charge-discharge characteristics with such solvents. On the other hand, polar solvents usually form solvation shells with solute ions, and cause a drastic reduction of ionic conductivity. Along these lines, there has been a curious question why the diffusion coefficient DLi of Li+ strongly depends on the salt concentration. In the present study, a theoretical model is developed on the basis of the Langevin equation in which the interactions between ions and… More >

  • Open Access

    ARTICLE

    Research on SFLA-Based Bidirectional Coordinated Control Strategy for EV Battery Swapping Station

    Guo Zhao1,2, Jiang Guo1,2, Hao Qiang3

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 343-356, 2017, DOI:10.3970/cmc.2017.053.343

    Abstract As a good measure to tackle the challenges from energy shortages and environmental pollution, Electric Vehicles (EVs) have entered a period of rapid growth. Battery swapping station is a very important way of energy supply to EVs, and it is urgently needed to explore a coordinated control strategy to effectively smooth the load fluctuation in order to adopt the large-scale EVs. Considering bidirectional power flow between the station and power grid, this paper proposed a SFLA-based control strategy to smooth the load profile. Finally, compared simulations were performed according to the related data. Compared to More >

  • Open Access

    ARTICLE

    Molecular Dynamics Analysis of High-temperature Molten-salt Electrolytes in Thermal Batteries

    C. F. Chen1, H. Y. Li1, C. W. Hong1,2

    CMC-Computers, Materials & Continua, Vol.46, No.3, pp. 145-163, 2015, DOI:10.3970/cmc.2015.046.145

    Abstract The purpose of this research is to improve the discharge rate and to predict the melting point of high-temperature molten-salt electrolytes in thermal batteries. Using molecular dynamics (MD) simulation techniques, we tried to develop some novel ternary and quaternary molten electrolytes to replace conventional binary LiCl-KCl ones. The simulation results with greater ionic conductivity and lower melting point are consistent with experimental results reported by previous literatures. The MD results have found that the lithium ion mole fraction in the molten-salt electrolytes affects the ionic conductivity significantly. This paper demonstrates that MD simulation techniques are More >

Displaying 51-60 on page 6 of 58. Per Page