Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (52)
  • Open Access

    ARTICLE

    An Adaptive Control Strategy for Energy Storage Interface Converter Based on Analogous Virtual Synchronous Generator

    Feng Zhao, Jinshuo Zhang*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.2, pp. 339-358, 2024, DOI:10.32604/ee.2023.043082

    Abstract In the DC microgrid, the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power. To address this issue, the application of a virtual synchronous generator (VSG) in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator (AVSG) control strategy for the interface DC/DC converter of the battery in the microgrid. Besides, a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control. Firstly, a… More >

  • Open Access

    PROCEEDINGS

    Numerical Study on the Thermal Management of Lithium-Ion Battery Pack Based on Heat Pipes and Phase Change Material

    Chen Gao1, Kai Sun1, QingZhi Hou2,3, KeWei Song1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.08905

    Abstract As the fossil energy is increasingly exhausted and air pollution becomes more and more serious, blade electric vehicles equipped with rechargeable lithium-ion battery turns into the major developing direction of new energy automobile [1-3]. Lithium-ion batteries have the advantages of high energy density, light weight, and no pollution, and thereby are widely used in electric vehicles [4,5]. However, the working performance and service life of lithium-ion batteries are greatly affected by temperature [6]. Excessive high and low temperature will reduce the charge and discharge capacity of lithium-ion batteries, shorten their service life, and even lead to safety accidents [7]. Therefore,… More >

  • Open Access

    ARTICLE

    System Energy and Efficiency Analysis of 12.5 W VRFB with Different Flow Rates

    Kehuan Xie1, Longhai Yu2,3, Chuanchang Li1,*

    Energy Engineering, Vol.120, No.12, pp. 2903-2915, 2023, DOI:10.32604/ee.2023.027636

    Abstract Vanadium redox flow battery (VRFB) is considered one of the most potential large-scale energy storage technologies in the future, and its electrolyte flow rate is an important factor affecting the performance of VRFB. To study the effect of electrolyte flow rate on the performance of VRFB, the hydrodynamic model is established and a VRFB system is developed. The results show that under constant current density, with the increase of electrolyte flow rate, not only the coulombic efficiency, energy efficiency, and voltage efficiency will increase, but also the capacity and energy discharged by VRFB will also increase. But on the other… More >

  • Open Access

    ARTICLE

    An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System

    Enhui Sun1,2, Jiahao Shi1,2, Lei Zhang1,2,*, Hongfu Ji1,2, Qian Zhang1,2, Yongyi Li1,2

    Energy Engineering, Vol.120, No.7, pp. 1583-1602, 2023, DOI:10.32604/ee.2023.027790

    Abstract This paper studies the feasibility of a supply-side wind-coal integrated energy system. Based on grid-side data, the load regulation model of coal-fired power and the wind-coal integrated energy system model are established. According to the simulation results, the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealed through scenario analysis. Based on the wind-coal combined operation, a wind-coal-storage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system (LIPBESS) to adjust the load of the system. According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,… More >

  • Open Access

    ARTICLE

    BATTERY COOLING OPTIONS IN ELECTRIC VEHICLES WITH HEAT PIPES

    Randeep Singha,*,†, Gero Lappa, Jason Velardob, Phan Thanh Longa, Masataka Mochizukic, Aliakbar Akbarzadehd, Abhijit Dated, Karsten Mausolfe, Kristin Bussee

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-8, 2021, DOI:10.5098/hmt.16.2

    Abstract In this paper, different options, based on heat pipes, for thermal management of electric vehicle (EV) battery system, at cell, module and pack level, for 40 to 400 W output heat, has been explored, analysed and compared. Cooling architecture based on embedded heat pipe (EHP) with single phase pumped cold plate (CP), as most adaptable design for low to medium range EVs, while EHP with loop heat pipe (LHP) as high performance design for high-end carlines, has been classified as potential cooling systems. Experimentally, it was shown that EHPs will provide best performance for heat acquisition at cell/module level, while… More >

  • Open Access

    ARTICLE

    LITHIUM-ION BATTERY FIRE SUPPRESSION USING WATER MIST SYSTEMS

    Matt Ghijia,*, Ian Burchb, Brigitta Suendermannb, Grant Gambleb, Vasily Novozhilov a, Paul Josepha, Khalid Moinuddina

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.13

    Abstract Lithium-ion batteries (LiBs) have superior energy density and lifetime compared to battery technologies such as lead acid. Despite the widespread application of LiBs in energy storage systems, electronic devices, aerospace and the automotive industry, they present a fire risk. In this study, experiments were conducted to characterize the thermal behavior of the electrolyte (as the main contributor to LiB fires) using a cone calorimeter; investigate the interactions of water mist and a Bunsen burner, as a precursor to examining the effectiveness of a water mist suppression system in extinguishing a LiB fire. In the present work, we have endeavored to… More >

  • Open Access

    ARTICLE

    FLOW DIRECTION EFFECTS ON TEMPERATURE DISTRIBUTION OF LI-ION CYLINDRICAL BATTERY MODULE WITH WATER/FERROFLUID AS COOLANTS

    Sarawut Sirikasemsuka , Songkran Wiriyasarta, Nittaya Naphonb, Paisarn Naphona,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-11, 2022, DOI:10.5098/hmt.19.31

    Abstract This paper investigates the working fluid with different flow directions on the battery management cooling system with de-ionized water and ferrofluid (0.015%by volume). The pack of batteries with two different coolant directions (Models I, II) used in the present study with sixty Li-ion cylindrical cells (25.2V and 30A) are tested under the trickle method for charged process and constant ampere for the discharged process to consider the battery module temperature distribution and cooling performance. The uniform temperatures of the battery pack significantly affect the long lifecycle and thermal performance. It is found that average temperatures are nearly constant at about… More >

  • Open Access

    ARTICLE

    RESEARCH ON A NOVEL CONCEPT OF SELF-FORMING AIR COOLING BATTERY RACK

    Mingjie Zhanga , Kai Yanga, Le Qinb, Xiaole Yaob, Qian Liub, Xing Jub,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-10, 2022, DOI:10.5098/hmt.19.13

    Abstract Lithium-ion batteries used for energy storage systems will release amount of heat during operation. It will cause serious consequences of thermal runaway if not dissipate in time. In this study, a self-forming air-cooled battery rack of the energy storage system is established based on the normal battery rack for energy storage and the shape of the energy storage battery itself. The frames of the battery rack acts as air ducts, which greatly reduce the system complexity. In this paper, the heat generation model is established based on the experiment, and the four battery rack forms are studied by CFD simulation.… More >

  • Open Access

    ARTICLE

    VISUALIZATION OF INDUCED COUNTER-ROTATING VORTICES FOR ELECTRIC VEHICLES BATTERY MODULE THERMAL MANAGEMENT

    A.C. Budimana,*, S. M. Hasheminejadb, Sudirjaa, A. Mitayanic, S. H. Winotod

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-6, 2022, DOI:10.5098/hmt.19.9

    Abstract Streamwise development of counter-rotating vortices induced by three different types of chevron Vortex Generators (VGs) placed upstream an Electric Vehicles (EV) dummy battery module is experimentally visualized using a smoke-wire method. From the single chevron reference case, the mushroom-like vortices do not collapse until passing the module. When more chevrons are used in line, the vortices become more prominent. It can also be observed that the vortex sizes and shapes are significantly influenced by the spanwise base length of the chevron. The induced vortices from all three VGs suggest a potential heat transfer augmentation for the EV battery module application. More >

  • Open Access

    ARTICLE

    INVESTIGATION AND OPTIMIZATION OF A THERMAL MANAGEMENT SYSTEM FOR LITHIUM-ION BATTERIES COMBINING CLOSED AIR-COOLING WITH PHASE CHANGE MATERIAL

    Xiaoyong Gua,*, Gang Wub, Biwen Chenc

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-9, 2023, DOI:10.5098/hmt.20.24

    Abstract To maintain the maximum temperature and temperature difference of batteries in electric vehicles within a reasonable range, a battery thermal management system combining closed air-cooling with phase change material(PCM) is proposed and investigated. A three-dimensional numerical model is developed and validated by experiment. The results indicate that the temperature rise of batteries decreases with the increase of ambient temperature. The increasing filling amount of PCM reduces the maximum temperature difference of batteries as well as the effect of the airflow rate on maximum temperature of batteries. The energy consumption is minimum when the filling amount of PCM is 0.28kg. More >

Displaying 1-10 on page 1 of 52. Per Page