Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    PROCEEDINGS

    Numerical Study on the Thermal Management of Lithium-Ion Battery Pack Based on Heat Pipes and Phase Change Material

    Chen Gao1, Kai Sun1, QingZhi Hou2,3, KeWei Song1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.08905

    Abstract As the fossil energy is increasingly exhausted and air pollution becomes more and more serious, blade electric vehicles equipped with rechargeable lithium-ion battery turns into the major developing direction of new energy automobile [1-3]. Lithium-ion batteries have the advantages of high energy density, light weight, and no pollution, and thereby are widely used in electric vehicles [4,5]. However, the working performance and service life of lithium-ion batteries are greatly affected by temperature [6]. Excessive high and low temperature will reduce the charge and discharge capacity of lithium-ion batteries, shorten their service life, and even lead… More >

  • Open Access

    ARTICLE

    System Energy and Efficiency Analysis of 12.5 W VRFB with Different Flow Rates

    Kehuan Xie1, Longhai Yu2,3, Chuanchang Li1,*

    Energy Engineering, Vol.120, No.12, pp. 2903-2915, 2023, DOI:10.32604/ee.2023.027636

    Abstract Vanadium redox flow battery (VRFB) is considered one of the most potential large-scale energy storage technologies in the future, and its electrolyte flow rate is an important factor affecting the performance of VRFB. To study the effect of electrolyte flow rate on the performance of VRFB, the hydrodynamic model is established and a VRFB system is developed. The results show that under constant current density, with the increase of electrolyte flow rate, not only the coulombic efficiency, energy efficiency, and voltage efficiency will increase, but also the capacity and energy discharged by VRFB will also More >

  • Open Access

    ARTICLE

    An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System

    Enhui Sun1,2, Jiahao Shi1,2, Lei Zhang1,2,*, Hongfu Ji1,2, Qian Zhang1,2, Yongyi Li1,2

    Energy Engineering, Vol.120, No.7, pp. 1583-1602, 2023, DOI:10.32604/ee.2023.027790

    Abstract This paper studies the feasibility of a supply-side wind-coal integrated energy system. Based on grid-side data, the load regulation model of coal-fired power and the wind-coal integrated energy system model are established. According to the simulation results, the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealed through scenario analysis. Based on the wind-coal combined operation, a wind-coal-storage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system (LIPBESS) to adjust the load of the system. According to the four load adjustment scenarios of grid-side… More >

  • Open Access

    ARTICLE

    INVESTIGATION AND OPTIMIZATION OF A THERMAL MANAGEMENT SYSTEM FOR LITHIUM-ION BATTERIES COMBINING CLOSED AIR-COOLING WITH PHASE CHANGE MATERIAL

    Xiaoyong Gua,*, Gang Wub, Biwen Chenc

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-9, 2023, DOI:10.5098/hmt.20.24

    Abstract To maintain the maximum temperature and temperature difference of batteries in electric vehicles within a reasonable range, a battery thermal management system combining closed air-cooling with phase change material(PCM) is proposed and investigated. A three-dimensional numerical model is developed and validated by experiment. The results indicate that the temperature rise of batteries decreases with the increase of ambient temperature. The increasing filling amount of PCM reduces the maximum temperature difference of batteries as well as the effect of the airflow rate on maximum temperature of batteries. The energy consumption is minimum when the filling amount More >

  • Open Access

    ARTICLE

    A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

    Wei Chen1, Na Sun1, Zhicheng Ma2, Wenfei Liu2, Haiying Dong1,*

    Energy Engineering, Vol.120, No.6, pp. 1445-1464, 2023, DOI:10.32604/ee.2023.027158

    Abstract To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the load when a large number of new energy sources are connected to the grid, a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM. Firstly, considering the coordination of FM units responding to automatic power generation control commands, a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of… More > Graphic Abstract

    A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

  • Open Access

    ARTICLE

    The Full Load Voltage Compensation Strategy in Capacity Configuration of UPQC Integrated PV-BESS

    Fuyin Ni1,2, Kai Li2,*

    Energy Engineering, Vol.120, No.5, pp. 1203-1221, 2023, DOI:10.32604/ee.2023.025796

    Abstract Unified power quality conditioner (UPQC) with energy storage is commonly based on conventional capacity configuration strategy with power angle control. It has problems such as phase jumping before and after compensation. DC-link cannot continuously emit active power externally. Therefore, this paper presents the compensation strategy of full load voltage magnitude and phase in capacity configuration of UPQC. The topology of UPQC is integrated a series active power filter (SAPF), a shunt active power filter (PAPF) and a photovoltaic-battery energy storage system (PV-BESS). The principle of full load voltage compensation is analyzed based on the PV-BESS-UPQC… More > Graphic Abstract

    The Full Load Voltage Compensation Strategy in Capacity Configuration of UPQC Integrated PV-BESS

  • Open Access

    ARTICLE

    Modeling, Analysis and Simulation of a High-Efficiency Battery Control System

    Mohammed Ayad Alkhafaji1, Yunus Uzun2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 709-732, 2023, DOI:10.32604/cmes.2023.024236

    Abstract This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage system. The three-phase half-controlled rectifier has been designed to control and convert the AC power into DC power. In addition, two types of direct current converters have been used in this paper which are a buck and bidirectional DC/DC converters. These systems adjust the output voltage to be lower or higher than the input voltage. In the buck converters, the main switch operates in… More >

  • Open Access

    ARTICLE

    Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature

    Donghun Wang, Jonghyun Lee, Minchan Kim, Insoo Lee*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2025-2040, 2023, DOI:10.32604/iasc.2023.034749

    Abstract Lithium-ion batteries are commonly used in electric vehicles, mobile phones, and laptops. These batteries demonstrate several advantages, such as environmental friendliness, high energy density, and long life. However, battery overcharging and overdischarging may occur if the batteries are not monitored continuously. Overcharging causes fire and explosion casualties, and overdischarging causes a reduction in the battery capacity and life. In addition, the internal resistance of such batteries varies depending on their external temperature, electrolyte, cathode material, and other factors; the capacity of the batteries decreases with temperature. In this study, we develop a method for estimating… More >

  • Open Access

    ARTICLE

    Performance of a Phase Change Material Battery in a Transparent Building

    Peter van den Engel1,*, Michael Malin2, Nikhilesh Kodur Venkatesh1, Luigi Antonio de Araujo Passos1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 783-805, 2023, DOI:10.32604/fdmp.2022.021962

    Abstract This research evaluates the performance of a Phase Change Material (PCM) battery integrated into the climate system of a new transparent meeting center. The main research questions are: a. “Can the performance of the battery be calculated?” and b. “Can the battery reduce the heating and cooling energy demand in a significant way?” The first question is answered in this document. In order to be able to answer the second question, especially the way the heat loading in winter should be improved, then more research is necessary. In addition to the thermal battery, which consists… More > Graphic Abstract

    Performance of a Phase Change Material Battery in a Transparent Building

  • Open Access

    ARTICLE

    Research on Performance Optimization of Liquid Cooling and Composite Phase Change Material Coupling Cooling Thermal Management System for Vehicle Power Battery

    Gang Wu1,2,*, Feng Liu1,2, Sijie Li1,2, Na Luo1,2, Zhiqiang Liu1,2, Yuqaing Li2,3

    Journal of Renewable Materials, Vol.11, No.2, pp. 707-730, 2023, DOI:10.32604/jrm.2022.022276

    Abstract The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries, with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target. The initial analysis of the battery pack at a 5C discharge rate, the influence of the single cell to cooling tube distance, the number of cooling tubes, inlet coolant temperature, the coolant flow rate, and other factors on the heat dissipation performance of the battery pack, initially determined a reasonable value for each design parameter. More >

Displaying 11-20 on page 2 of 61. Per Page