Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    BATTERY COOLING OPTIONS IN ELECTRIC VEHICLES WITH HEAT PIPES

    Randeep Singha,*,†, Gero Lappa, Jason Velardob, Phan Thanh Longa, Masataka Mochizukic, Aliakbar Akbarzadehd, Abhijit Dated, Karsten Mausolfe, Kristin Bussee

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-8, 2021, DOI:10.5098/hmt.16.2

    Abstract In this paper, different options, based on heat pipes, for thermal management of electric vehicle (EV) battery system, at cell, module and pack level, for 40 to 400 W output heat, has been explored, analysed and compared. Cooling architecture based on embedded heat pipe (EHP) with single phase pumped cold plate (CP), as most adaptable design for low to medium range EVs, while EHP with loop heat pipe (LHP) as high performance design for high-end carlines, has been classified as potential cooling systems. Experimentally, it was shown that EHPs will provide best performance for heat More >

  • Open Access

    ARTICLE

    LITHIUM-ION BATTERY FIRE SUPPRESSION USING WATER MIST SYSTEMS

    Matt Ghijia,*, Ian Burchb, Brigitta Suendermannb, Grant Gambleb, Vasily Novozhilov a, Paul Josepha, Khalid Moinuddina

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.13

    Abstract Lithium-ion batteries (LiBs) have superior energy density and lifetime compared to battery technologies such as lead acid. Despite the widespread application of LiBs in energy storage systems, electronic devices, aerospace and the automotive industry, they present a fire risk. In this study, experiments were conducted to characterize the thermal behavior of the electrolyte (as the main contributor to LiB fires) using a cone calorimeter; investigate the interactions of water mist and a Bunsen burner, as a precursor to examining the effectiveness of a water mist suppression system in extinguishing a LiB fire. In the present… More >

  • Open Access

    ARTICLE

    FLOW DIRECTION EFFECTS ON TEMPERATURE DISTRIBUTION OF LI-ION CYLINDRICAL BATTERY MODULE WITH WATER/FERROFLUID AS COOLANTS

    Sarawut Sirikasemsuka , Songkran Wiriyasarta, Nittaya Naphonb, Paisarn Naphona,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-11, 2022, DOI:10.5098/hmt.19.31

    Abstract This paper investigates the working fluid with different flow directions on the battery management cooling system with de-ionized water and ferrofluid (0.015%by volume). The pack of batteries with two different coolant directions (Models I, II) used in the present study with sixty Li-ion cylindrical cells (25.2V and 30A) are tested under the trickle method for charged process and constant ampere for the discharged process to consider the battery module temperature distribution and cooling performance. The uniform temperatures of the battery pack significantly affect the long lifecycle and thermal performance. It is found that average temperatures… More >

  • Open Access

    ARTICLE

    RESEARCH ON A NOVEL CONCEPT OF SELF-FORMING AIR COOLING BATTERY RACK

    Mingjie Zhanga , Kai Yanga, Le Qinb, Xiaole Yaob, Qian Liub, Xing Jub,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-10, 2022, DOI:10.5098/hmt.19.13

    Abstract Lithium-ion batteries used for energy storage systems will release amount of heat during operation. It will cause serious consequences of thermal runaway if not dissipate in time. In this study, a self-forming air-cooled battery rack of the energy storage system is established based on the normal battery rack for energy storage and the shape of the energy storage battery itself. The frames of the battery rack acts as air ducts, which greatly reduce the system complexity. In this paper, the heat generation model is established based on the experiment, and the four battery rack forms… More >

  • Open Access

    ARTICLE

    VISUALIZATION OF INDUCED COUNTER-ROTATING VORTICES FOR ELECTRIC VEHICLES BATTERY MODULE THERMAL MANAGEMENT

    A.C. Budimana,*, S. M. Hasheminejadb, Sudirjaa, A. Mitayanic, S. H. Winotod

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-6, 2022, DOI:10.5098/hmt.19.9

    Abstract Streamwise development of counter-rotating vortices induced by three different types of chevron Vortex Generators (VGs) placed upstream an Electric Vehicles (EV) dummy battery module is experimentally visualized using a smoke-wire method. From the single chevron reference case, the mushroom-like vortices do not collapse until passing the module. When more chevrons are used in line, the vortices become more prominent. It can also be observed that the vortex sizes and shapes are significantly influenced by the spanwise base length of the chevron. The induced vortices from all three VGs suggest a potential heat transfer augmentation for More >

  • Open Access

    ARTICLE

    INVESTIGATION AND OPTIMIZATION OF A THERMAL MANAGEMENT SYSTEM FOR LITHIUM-ION BATTERIES COMBINING CLOSED AIR-COOLING WITH PHASE CHANGE MATERIAL

    Xiaoyong Gua,*, Gang Wub, Biwen Chenc

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-9, 2023, DOI:10.5098/hmt.20.24

    Abstract To maintain the maximum temperature and temperature difference of batteries in electric vehicles within a reasonable range, a battery thermal management system combining closed air-cooling with phase change material(PCM) is proposed and investigated. A three-dimensional numerical model is developed and validated by experiment. The results indicate that the temperature rise of batteries decreases with the increase of ambient temperature. The increasing filling amount of PCM reduces the maximum temperature difference of batteries as well as the effect of the airflow rate on maximum temperature of batteries. The energy consumption is minimum when the filling amount More >

  • Open Access

    ARTICLE

    A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

    Wei Chen1, Na Sun1, Zhicheng Ma2, Wenfei Liu2, Haiying Dong1,*

    Energy Engineering, Vol.120, No.6, pp. 1445-1464, 2023, DOI:10.32604/ee.2023.027158

    Abstract To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the load when a large number of new energy sources are connected to the grid, a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM. Firstly, considering the coordination of FM units responding to automatic power generation control commands, a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of… More > Graphic Abstract

    A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

  • Open Access

    ARTICLE

    The Full Load Voltage Compensation Strategy in Capacity Configuration of UPQC Integrated PV-BESS

    Fuyin Ni1,2, Kai Li2,*

    Energy Engineering, Vol.120, No.5, pp. 1203-1221, 2023, DOI:10.32604/ee.2023.025796

    Abstract Unified power quality conditioner (UPQC) with energy storage is commonly based on conventional capacity configuration strategy with power angle control. It has problems such as phase jumping before and after compensation. DC-link cannot continuously emit active power externally. Therefore, this paper presents the compensation strategy of full load voltage magnitude and phase in capacity configuration of UPQC. The topology of UPQC is integrated a series active power filter (SAPF), a shunt active power filter (PAPF) and a photovoltaic-battery energy storage system (PV-BESS). The principle of full load voltage compensation is analyzed based on the PV-BESS-UPQC… More > Graphic Abstract

    The Full Load Voltage Compensation Strategy in Capacity Configuration of UPQC Integrated PV-BESS

  • Open Access

    ARTICLE

    Modeling, Analysis and Simulation of a High-Efficiency Battery Control System

    Mohammed Ayad Alkhafaji1, Yunus Uzun2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 709-732, 2023, DOI:10.32604/cmes.2023.024236

    Abstract This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage system. The three-phase half-controlled rectifier has been designed to control and convert the AC power into DC power. In addition, two types of direct current converters have been used in this paper which are a buck and bidirectional DC/DC converters. These systems adjust the output voltage to be lower or higher than the input voltage. In the buck converters, the main switch operates in… More >

  • Open Access

    ARTICLE

    Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature

    Donghun Wang, Jonghyun Lee, Minchan Kim, Insoo Lee*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2025-2040, 2023, DOI:10.32604/iasc.2023.034749

    Abstract Lithium-ion batteries are commonly used in electric vehicles, mobile phones, and laptops. These batteries demonstrate several advantages, such as environmental friendliness, high energy density, and long life. However, battery overcharging and overdischarging may occur if the batteries are not monitored continuously. Overcharging causes fire and explosion casualties, and overdischarging causes a reduction in the battery capacity and life. In addition, the internal resistance of such batteries varies depending on their external temperature, electrolyte, cathode material, and other factors; the capacity of the batteries decreases with temperature. In this study, we develop a method for estimating… More >

Displaying 11-20 on page 2 of 58. Per Page