Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network

    Yu Zhang, Daoyu Zhang*, Tiezhou Wu

    Energy Engineering, Vol.122, No.1, pp. 203-220, 2025, DOI:10.32604/ee.2024.056244 - 27 December 2024

    Abstract Precisely estimating the state of health (SOH) of lithium-ion batteries is essential for battery management systems (BMS), as it plays a key role in ensuring the safe and reliable operation of battery systems. However, current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation. Additionally, the Elman neural network, which is commonly employed for SOH estimation, exhibits several drawbacks, including slow training speed, a tendency to become trapped in local minima, and the initialization of weights and thresholds using pseudo-random numbers, leading to unstable model performance.… More >

  • Open Access

    ARTICLE

    Novel C/MoS2 hollow nanocomposites enhance lithium storage in battery anodes

    J. Liua, Y. X. Liub, J. N. Dingb, W. Yanb, Y. C. Weib, J. Xub,*

    Chalcogenide Letters, Vol.21, No.7, pp. 499-511, 2024, DOI:10.15251/CL.2024.217.499

    Abstract With society's rapid progress, there is an increasing need for electricity among individuals, but the prevailing source of electricity is still mainly obtained through the burning of nonrenewable fossil fuels, which are not renewable and pose serious environmental hazards. Lithium-ion batteries are used widely for excellent rechargeable capabilities and high energy density. Recently, researchers have become increasingly interested in transition metal sulfides owing to their cost-effectiveness and remarkable specific capacity. However, their commercialization has been hindered by the expansion of material volume and low electrical conductivity during charging and discharging. We have successfully designed and More >

  • Open Access

    ARTICLE

    Hydrothermally synthesized highly stable binary manganese magnesium sulfide (MnMgS) composite with carbon nanotubes for high-performance supercapattery applications

    M. A. Sadia,*, A. Mahmoodb, W. Al-Masryb, C. W. Dunnillc, N. Mahmoodd

    Chalcogenide Letters, Vol.21, No.12, pp. 965-976, 2024, DOI:10.15251/CL.2024.2112.965

    Abstract The device which combines the outcomes supercapacitor (SC) and battery is known as supercapattery. Due to their high conductivity, sensitivity, and storage capacity, carbon nanotubes have drawn attention in energy storage (EES) applications. To achieve highperformance supercapattery, this study used an electrode based on carbon nanotubes (CNTs) and manganese magnesium sulfide (MnMgS). It showed 963 C/g specific capacity which is significantly greater than the reference sample's value of 1 A/g. The supercapattery is engineered using the CNT-doped MnMgS electrode (MnMgS/CNT//AC), which has a specific capacity (Cs) of 268 Cg-1 at 1 Ag-1 current density. A significantly higher More >

  • Open Access

    ARTICLE

    Green Chemistry of Cellulose Acetate Membrane Plasticized by Citric Acid and Succinonitrile for Lithium-Ion Battery Application

    Christin Rina Ratri1,2, Qolby Sabrina2, Adam Febriyanto Nugraha1, Sotya Astutiningsih1, Mochamad Chalid1,*

    Journal of Renewable Materials, Vol.12, No.11, pp. 1863-1878, 2024, DOI:10.32604/jrm.2024.055492 - 22 November 2024

    Abstract Commercial lithium-ion batteries (LIBs) use polyolefins as separators. This has led to increased research on separators composed of renewable materials such as cellulose and its derivatives. In this study, the ionic conductivity of cellulose acetate (CA) polymer electrolyte membranes was enhanced via plasticization with citric acid and succinonitrile. The primary objective of this study was to evaluate the effectiveness of these plasticizers in improving cellulose-based separator membranes in LIBs. CA membranes were fabricated using solution casting technique and then plasticized with various concentrations of plasticizers. The structural, thermal, and electrochemical properties of the resulting membranes… More > Graphic Abstract

    Green Chemistry of Cellulose Acetate Membrane Plasticized by Citric Acid and Succinonitrile for Lithium-Ion Battery Application

  • Open Access

    ARTICLE

    Modeling, Simulation, and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios

    Xiaohui Ye1,*, Fucheng Tan1, Xinli Song2, Hanyang Dai2, Xia Li2, Shixia Mu2, Shaohang Hao2

    Energy Engineering, Vol.121, No.12, pp. 3689-3710, 2024, DOI:10.32604/ee.2024.055200 - 22 November 2024

    Abstract Energy storage batteries can smooth the volatility of renewable energy sources. The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system (BESS). However, the current modeling of grid-connected BESS is overly simplistic, typically only considering state of charge (SOC) and power constraints. Detailed lithium (Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions. Additionally, there is a lack of real-time batteries risk assessment frameworks. To address these issues, in this… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Slot-Die Coating for Lithium-Ion Battery Electrode and Investigation into Coating Characteristics

    Peng Wang1,*, Ningbo Li1, Ruolan Jiang1, Bing Dong1, Dongliang Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012551

    Abstract Lithium-ion batteries, renowned for their lightweight design and voltage stability, have found widespread applications in portable electronic devices, stationary energy storage systems, and electric vehicles. Slurry coating stands out as a pivotal manufacturing process for lithium-ion battery electrodes. In particular, slot-die coating technology, known for its rapid coating speed, has seen extensive engineering adoption in recent years. Utilizing numerical simulations to study the slurry coating process for lithium-ion battery electrodes allows for a detailed analysis of the complex fluid dynamics involved, thereby playing a crucial role in improving coating uniformity and enhancing battery performance. This… More >

  • Open Access

    ARTICLE

    Itinerary-Dependent Degradation Analysis of a Lithium-Ion Battery Cell for E-Bike Applications in Rwanda

    Aimable Ngendahayo1,*, Adrià Junyent-Ferré2, Joan Marc Rodriguez Bernuz3, Etienne Ntagwirumugara1

    Energy Engineering, Vol.121, No.11, pp. 3121-3131, 2024, DOI:10.32604/ee.2024.053100 - 21 October 2024

    Abstract There are obstacles to the widespread use of small electric vehicles (EVs) in Rwanda, including concerns regarding the battery range and lifespan. Lithium-ion batteries (LIBs) play an important role in EVs. However, their performance declines over time because of several factors. To optimize battery management systems and extend the range of EVs in Rwanda, it is essential to understand the influence of the driving profiles on lithium-ion battery degradation. This study analyzed the degradation patterns of a lithium-ion battery cell that propels an E-bike using various real-world E-bike driving cycles that represent Rwandan driving conditions… More >

  • Open Access

    ARTICLE

    A Joint Estimation Method of SOC and SOH for Lithium-ion Battery Considering Cyber-Attacks Based on GA-BP

    Tianqing Yuan1,2, Na Li1,2, Hao Sun3, Sen Tan4,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4497-4512, 2024, DOI:10.32604/cmc.2024.056061 - 12 September 2024

    Abstract To improve the estimation accuracy of state of charge (SOC) and state of health (SOH) for lithium-ion batteries, in this paper, a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm (GA) combined with back propagation (BP) neural network is proposed, the research addresses the issue of data manipulation resulting from cyber-attacks. Firstly, anomalous data stemming from cyber-attacks are identified and eliminated using the isolated forest algorithm, followed by data restoration. Secondly, the incremental capacity (IC) curve is derived from the restored data using the Kalman filtering algorithm, with… More >

  • Open Access

    ARTICLE

    The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power + Energy Storage Systems

    Caifeng Wen1,2, Boxin Zhang1,*, Yuanjun Dai3, Wenxin Wang4, Wanbing Xie1, Qian Du1

    Energy Engineering, Vol.121, No.10, pp. 2961-2979, 2024, DOI:10.32604/ee.2024.041677 - 11 September 2024

    Abstract Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems. The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system, and to explore the correlation between system entropy generation and various indicators, so as to provide a theoretical basis for directly improving power quality by reducing loss. A steady-state experiment was performed by replacing the wind wheel with an electric motor,… More >

  • Open Access

    ARTICLE

    A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples

    Miao Li, Fanyong Cheng*, Jiong Yang, Maxwell Mensah Duodu, Hao Tu

    Energy Engineering, Vol.121, No.9, pp. 2543-2568, 2024, DOI:10.32604/ee.2024.051231 - 19 August 2024

    Abstract Accurate and reliable fault detection is essential for the safe operation of electric vehicles. Support vector data description (SVDD) has been widely used in the field of fault detection. However, constructing the hypersphere boundary only describes the distribution of unlabeled samples, while the distribution of faulty samples cannot be effectively described and easily misses detecting faulty data due to the imbalance of sample distribution. Meanwhile, selecting parameters is critical to the detection performance, and empirical parameterization is generally time-consuming and laborious and may not result in finding the optimal parameters. Therefore, this paper proposes a… More >

Displaying 21-30 on page 3 of 88. Per Page