Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Integration of Large Language Models (LLMs) and Static Analysis for Improving the Efficacy of Security Vulnerability Detection in Source Code

    José Armando Santas Ciavatta, Juan Ramón Bermejo Higuera*, Javier Bermejo Higuera, Juan Antonio Sicilia Montalvo, Tomás Sureda Riera, Jesús Pérez Melero

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074566 - 12 January 2026

    Abstract As artificial Intelligence (AI) continues to expand exponentially, particularly with the emergence of generative pre-trained transformers (GPT) based on a transformer’s architecture, which has revolutionized data processing and enabled significant improvements in various applications. This document seeks to investigate the security vulnerabilities detection in the source code using a range of large language models (LLM). Our primary objective is to evaluate the effectiveness of Static Application Security Testing (SAST) by applying various techniques such as prompt persona, structure outputs and zero-shot. To the selection of the LLMs (CodeLlama 7B, DeepSeek coder 7B, Gemini 1.5 Flash,… More >

  • Open Access

    REVIEW

    Transforming Healthcare with State-of-the-Art Medical-LLMs: A Comprehensive Evaluation of Current Advances Using Benchmarking Framework

    Himadri Nath Saha1, Dipanwita Chakraborty Bhattacharya2,*, Sancharita Dutta3, Arnab Bera3, Srutorshi Basuray4, Satyasaran Changdar5, Saptarshi Banerjee6, Jon Turdiev7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-56, 2026, DOI:10.32604/cmc.2025.070507 - 09 December 2025

    Abstract The emergence of Medical Large Language Models has significantly transformed healthcare. Medical Large Language Models (Med-LLMs) serve as transformative tools that enhance clinical practice through applications in decision support, documentation, and diagnostics. This evaluation examines the performance of leading Med-LLMs, including GPT-4Med, Med-PaLM, MEDITRON, PubMedGPT, and MedAlpaca, across diverse medical datasets. It provides graphical comparisons of their effectiveness in distinct healthcare domains. The study introduces a domain-specific categorization system that aligns these models with optimal applications in clinical decision-making, documentation, drug discovery, research, patient interaction, and public health. The paper addresses deployment challenges of Medical-LLMs, More >

  • Open Access

    ARTICLE

    Valorisation of Northern Moroccan Centaurium erythraea: Targeted Phytochemistry, Antioxidant, Antimicrobial Efficacy and Drug Likeness Benchmarking

    Yousra Hammouti1,2,*, François Mesnard2, Oussama Khibech3, Mohamed Taibi1, Yousra Belbachir3, El Hassania Loukili4, Reda Bellaouchi5, Abdeslam Asehraou5, Mohamed Addi1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3563-3583, 2025, DOI:10.32604/phyton.2025.071139 - 01 December 2025

    Abstract Centaurium erythraea Rafn (“Gosset El Haya”) has long been prized in North African folk medicine, yet Moroccan chemobiological data remain scarce. Ethanol extracts of northern Moroccan aerial parts were profiled by high-performance liquid chromatography (HPLC) and found rich in phenolics, dominated by 4-hydroxybenzoic acid (57.8%) and naringin (10.3%). The extract exhibited strong antioxidant power in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay, with a half-maximal inhibitory concentration (IC50) of ≈74 µg mL−1, and a total antioxidant capacity (TAC) of ≈201 µg mL−1 and selective antimicrobial activity, sharply inhibiting Aspergillus niger, Penicillium digitatum, and Rhodotorula glutinis while sparing Staphylococcus aureus. In-silico absorption, distribution, metabolism,… More >

  • Open Access

    REVIEW

    Bridging the Gap in Recycled Aggregate Concrete (RAC) Prediction: State-of-the-Art Data-Driven Framework, Model Benchmarking, and Future AI Integration

    Haoyun Fan1, Soon Poh Yap1,*, Shengkang Zhang1, Ahmed El-Shafie2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 17-65, 2025, DOI:10.32604/cmes.2025.070880 - 30 October 2025

    Abstract Data-driven research on recycled aggregate concrete (RAC) has long faced the challenge of lacking a unified testing standard dataset, hindering accurate model evaluation and trust in predictive outcomes. This paper reviews critical parameters influencing mechanical properties in 35 RAC studies, compiles four datasets encompassing these parameters, and compiles the performance and key findings of 77 published data-driven models. Baseline capability tests are conducted on the nine most used models. The paper also outlines advanced methodological frameworks for future RAC research, examining the principles and challenges of physics-informed neural networks (PINNs) and generative adversarial networks (GANs), More >

  • Open Access

    ARTICLE

    Narwhal Optimizer: A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems

    Raja Masadeh1, Omar Almomani2,*, Abdullah Zaqebah1, Shayma Masadeh3, Kholoud Alshqurat3, Ahmad Sharieh4, Nesreen Alsharman5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3709-3737, 2025, DOI:10.32604/cmc.2025.066797 - 23 September 2025

    Abstract This research presents a novel nature-inspired metaheuristic optimization algorithm, called the Narwhale Optimization Algorithm (NWOA). The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals, “unicorns of the sea”, particularly the use of their distinctive spiral tusks, which play significant roles in hunting, searching prey, navigation, echolocation, and complex social interaction. Particularly, the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the… More >

  • Open Access

    ARTICLE

    Using Time Series Foundation Models for Few-Shot Remaining Useful Life Prediction of Aircraft Engines

    Ricardo Dintén*, Marta Zorrilla

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 239-265, 2025, DOI:10.32604/cmes.2025.065461 - 31 July 2025

    Abstract Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events, posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing, which frequently leads to the development of large and complex models. Inspired by the success of Large Language Models (LLMs), transformer-based foundation models have been developed for time series (TSFM). These models have been proven to reconstruct time series in a zero-shot manner, being able to capture different patterns that effectively characterize time series. This paper proposes the use of TSFM to generate… More >

  • Open Access

    ARTICLE

    Systematic Benchmarking of Topology Optimization Methods Using Both Binary and Relaxed Forms of the Zhou-Rozvany Problem

    Jiye Zhou1, Yun-Fei Fu2, Kazem Ghabraie1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3233-3251, 2025, DOI:10.32604/cmes.2025.065935 - 30 June 2025

    Abstract Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits. However, when benchmarking these methods, researchers use known solutions to only a single form of benchmark problem. This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms. A greyness measure is implemented to evaluate how far a solution is from the desired binary form. The well-known Zhou-Rozvany (ZR) problem is selected as the benchmarking problem here, making use of available global solutions… More >

  • Open Access

    REVIEW

    Monocular 3D Human Pose Estimation for REBA Ergonomics: A Critical Review of Recent Advances

    Ahmad Mwfaq Bataineh1,2,*, Ahmad Sufril Azlan Mohamed1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 93-124, 2025, DOI:10.32604/cmc.2025.064250 - 09 June 2025

    Abstract Advancements in deep learning have considerably enhanced techniques for Rapid Entire Body Assessment (REBA) pose estimation by leveraging progress in three-dimensional human modeling. This survey provides an extensive overview of recent advancements, particularly emphasizing monocular image-based methodologies and their incorporation into ergonomic risk assessment frameworks. By reviewing literature from 2016 to 2024, this study offers a current and comprehensive analysis of techniques, existing challenges, and emerging trends in three-dimensional human pose estimation. In contrast to traditional reviews organized by learning paradigms, this survey examines how three-dimensional pose estimation is effectively utilized within musculoskeletal disorder (MSD)… More >

  • Open Access

    ARTICLE

    Evaluation and Benchmarking of Cybersecurity DDoS Attacks Detection Models through the Integration of FWZIC and MABAC Methods

    Alaa Mahmood, İsa Avcı*

    Computer Systems Science and Engineering, Vol.49, pp. 401-417, 2025, DOI:10.32604/csse.2025.062413 - 25 April 2025

    Abstract A Distributed Denial-of-Service (DDoS) attack poses a significant challenge in the digital age, disrupting online services with operational and financial consequences. Detecting such attacks requires innovative and effective solutions. The primary challenge lies in selecting the best among several DDoS detection models. This study presents a framework that combines several DDoS detection models and Multiple-Criteria Decision-Making (MCDM) techniques to compare and select the most effective models. The framework integrates a decision matrix from training several models on the CiC-DDOS2019 dataset with Fuzzy Weighted Zero Inconsistency Criterion (FWZIC) and Multi-Attribute Boundary Approximation Area Comparison (MABAC) methodologies.… More >

  • Open Access

    ARTICLE

    LIRB-Based Quantum Circuit Fidelity Assessment and Gate Fault Diagnosis

    Mengdi Yang, Feng Yue, Weilong Wang, Xiangdong Meng, Lixin Wang, Pengyu Han, Haoran He, Benzheng Yuan, Zhiqiang Fan, Chenhui Wang, Qiming Du, Danyang Zheng, Xuefei Feng, Zheng Shan*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2215-2233, 2025, DOI:10.32604/cmc.2024.058163 - 17 February 2025

    Abstract Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fidelity include direct fidelity estimation and mirror circuit fidelity estimation. The former is challenging to implement in practice, while the latter requires substantial classical computational resources and numerous experimental runs. In this paper, we propose a fidelity estimation method based on Layer Interleaved Randomized Benchmarking, which decomposes a complex quantum circuit into multiple sublayers. By independently evaluating the fidelity of each layer, one can comprehensively… More >

Displaying 1-10 on page 1 of 46. Per Page