Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    A Smooth Bidirectional Evolutionary Structural Optimization of Vibrational Structures for Natural Frequency and Dynamic Compliance

    Xiaoyan Teng1, Qiang Li1, Xudong Jiang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2479-2496, 2023, DOI:10.32604/cmes.2023.023110

    Abstract A smooth bidirectional evolutionary structural optimization (SBESO), as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load. A weighted function is introduced to regulate the mass and stiffness matrix of an element, which has the inefficient element gradually removed from the design domain as if it were undergoing damage. Aiming at maximizing the natural frequency of a structure, the frequency optimization formulation is proposed using the SBESO technique. The effects of various weight functions including constant, linear and More >

  • Open Access


    A Modified Bi-Directional Evolutionary Structural Optimization Procedure with Variable Evolutionary Volume Ratio Applied to Multi-Objective Topology Optimization Problem

    Xudong Jiang1,*, Jiaqi Ma1, Xiaoyan Teng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 511-526, 2023, DOI:10.32604/cmes.2022.022785

    Abstract Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive, aviation and construction industries. This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization (BESO). The conventional BESO is provided with constant evolutionary volume ratio (EVR), whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements. To address the issue, the modified BESO with variable EVR is introduced. To compromise the natural frequency and the dynamic stiffness, More >

  • Open Access


    Stress Relaxation and Sensitivity Weight for Bi-Directional Evolutionary Structural Optimization to Improve the Computational Efficiency and Stabilization on Stress-Based Topology Optimization

    Chao Ma, Yunkai Gao*, Yuexing Duan, Zhe Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 715-738, 2021, DOI:10.32604/cmes.2021.011187

    Abstract Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs. To solve the inherent issues of stress-based topology optimization, many schemes are added to the conventional bi-directional evolutionary structural optimization (BESO) method in the previous studies. However, these schemes degrade the generality of BESO and increase the computational cost. This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method. A global stress measure constructed by p-norm function is treated as… More >

Displaying 1-10 on page 1 of 3. Per Page