Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Semi-Supervised New Intention Discovery for Syntactic Elimination and Fusion in Elastic Neighborhoods

    Di Wu*, Liming Feng, Xiaoyu Wang

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 977-999, 2025, DOI:10.32604/cmc.2025.060319 - 26 March 2025

    Abstract Semi-supervised new intent discovery is a significant research focus in natural language understanding. To address the limitations of current semi-supervised training data and the underutilization of implicit information, a Semi-supervised New Intent Discovery for Elastic Neighborhood Syntactic Elimination and Fusion model (SNID-ENSEF) is proposed. Syntactic elimination contrast learning leverages verb-dominant syntactic features, systematically replacing specific words to enhance data diversity. The radius of the positive sample neighborhood is elastically adjusted to eliminate invalid samples and improve training efficiency. A neighborhood sample fusion strategy, based on sample distribution patterns, dynamically adjusts neighborhood size and fuses sample More >

  • Open Access

    ARTICLE

    Deep-BERT: Transfer Learning for Classifying Multilingual Offensive Texts on Social Media

    Md. Anwar Hussen Wadud1, M. F. Mridha1, Jungpil Shin2,*, Kamruddin Nur3, Aloke Kumar Saha4

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1775-1791, 2023, DOI:10.32604/csse.2023.027841 - 15 June 2022

    Abstract Offensive messages on social media, have recently been frequently used to harass and criticize people. In recent studies, many promising algorithms have been developed to identify offensive texts. Most algorithms analyze text in a unidirectional manner, where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences. In addition, there are many separate models for identifying offensive texts based on monolingual and multilingual, but there are a few models that can detect both monolingual and multilingual-based offensive texts. In this study, a detection system has been developed for both monolingual… More >

Displaying 1-10 on page 1 of 2. Per Page