Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Ultrashort-Term Power Prediction of Distributed Photovoltaic Based on Variational Mode Decomposition and Channel Attention Mechanism

    Zhebin Sun1, Wei Wang1, Mingxuan Du2, Tao Liang1, Yang Liu1, Hailong Fan3, Cuiping Li2, Xingxu Zhu2, Junhui Li2,*

    Energy Engineering, Vol.122, No.6, pp. 2155-2175, 2025, DOI:10.32604/ee.2025.062218 - 29 May 2025

    Abstract Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation. This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition (VMD) and Channel Attention Mechanism. First, Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power. Second, the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition (VMD). Finally, the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM… More >

  • Open Access

    ARTICLE

    Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network

    Yongfeng Tai1, Xingyu Yan2, Xiangyi Geng3, Lin Mu4, Mingshun Jiang2, Faye Zhang2,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 365-383, 2025, DOI:10.32604/sdhm.2024.053998 - 15 January 2025

    Abstract The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee. In engineering scenarios, only a small amount of bearing performance degradation data can be obtained through accelerated life testing. In the absence of lifetime data, the hidden long-term correlation between performance degradation data is challenging to mine effectively, which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method. To address this problem, a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed. Firstly,… More >

  • Open Access

    ARTICLE

    A Time Series Intrusion Detection Method Based on SSAE, TCN and Bi-LSTM

    Zhenxiang He*, Xunxi Wang, Chunwei Li

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 845-871, 2024, DOI:10.32604/cmc.2023.046607 - 30 January 2024

    Abstract In the fast-evolving landscape of digital networks, the incidence of network intrusions has escalated alarmingly. Simultaneously, the crucial role of time series data in intrusion detection remains largely underappreciated, with most systems failing to capture the time-bound nuances of network traffic. This leads to compromised detection accuracy and overlooked temporal patterns. Addressing this gap, we introduce a novel SSAE-TCN-BiLSTM (STL) model that integrates time series analysis, significantly enhancing detection capabilities. Our approach reduces feature dimensionality with a Stacked Sparse Autoencoder (SSAE) and extracts temporally relevant features through a Temporal Convolutional Network (TCN) and Bidirectional Long… More >

  • Open Access

    ARTICLE

    Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed

    Neelam Mughees1,2, Mujtaba Hussain Jaffery1, Abdullah Mughees3, Anam Mughees4, Krzysztof Ejsmont5,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6375-6393, 2023, DOI:10.32604/cmc.2023.038564 - 29 April 2023

    Abstract Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked,… More >

  • Open Access

    ARTICLE

    Bidirectional Long Short-Term Memory Network for Taxonomic Classification

    Naglaa. F. Soliman1,*, Samia M. Abd Alhalem2, Walid El-Shafai2, Salah Eldin S. E. Abdulrahman3, N. Ismaiel3, El-Sayed M. El-Rabaie2, Abeer D. Algarni1, Fatimah Algarni4, Fathi E. Abd El-Samie1,2

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 103-116, 2022, DOI:10.32604/iasc.2022.017691 - 05 January 2022

    Abstract Identifying and classifying Deoxyribonucleic Acid (DNA) sequences and their functions have been considered as the main challenges in bioinformatics. Advances in machine learning and Deep Learning (DL) techniques are expected to improve DNA sequence classification. Since the DNA sequence classification depends on analyzing textual data, Bidirectional Long Short-Term Memory (BLSTM) algorithms are suitable for tackling this task. Generally, classifiers depend on the patterns to be processed and the pre-processing method. This paper is concerned with a new proposed classification framework based on Frequency Chaos Game Representation (FCGR) followed by Discrete Wavelet Transform (DWT) and BLSTM.… More >

Displaying 1-10 on page 1 of 5. Per Page