Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (105)
  • Open Access

    ARTICLE

    Effect of Residual Stresses on Wave Propagation in Adhesively Bonded Multilayered MEMS Structures

    M. Kashtalyan1,2, Y.A. Zhuk3

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.1, pp. 1-30, 2010, DOI:10.3970/cmes.2010.057.001

    Abstract The paper investigates propagation of stationary plane longitudinal and transverse waves along the layers in adhesively bonded multilayered structures for MEMS applications in the presence of residual stresses. The multilayered structure is assumed to consist of the infinite amount of the periodically recurring layers made of two different materials possessing significantly dissimilar properties: conductive metal layer and insulating adhesive layer. It is assumed that the mechanical behaviour of both materials is nonlinear elastic and can be described with the help of the elastic Murnaghan potential depending on the three invariants of strain tensor. The problem is formulated in the framework… More >

  • Open Access

    ARTICLE

    Modeling of Particle Debonding and Void Evolution in Particulated Ductile Composites

    B.R.Kim1 and H.K.Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 253-282, 2009, DOI:10.3970/cmes.2009.047.253

    Abstract Damage characteristic of particulated ductile composites is a complex evolutionary phenomenon that includes particle debonding and void evolution with the accumulation of the plastic straining of the ductile matrix. In this paper, a micromechanical elastoplastic damage model for ductile matrix composites considering gradually incremental damage (particle debonding and void evolution) is proposed to predict the overall elastoplastic behavior and damage evolution in the composites. The constitutive damage model proposed in an earlier work by the authors [Kim and Lee (2009)] considering particle debonding is extended to accommodate the gradually incremental damage and elastoplastic behavior of the composites. On the basis… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Cohesive Fracture by the Virtual-Internal-Bond Model

    P. Zhang1, P. Klein2, Y. Huang1,3, H. Gao4, P. D. Wu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.2, pp. 263-278, 2002, DOI:10.3970/cmes.2002.003.263

    Abstract The recently developed virtual-internal-bond (VIB) model has incorporated a cohesive-type law into the constitutive law of solids such that fracture and failure of solids become a coherent part of the constitutive law and no separate fracture or failure criteria are needed. A numerical algorithm is developed in this study for the VIB model under static loadings. The model is applied to study three examples, namely the crack nucleation and propagation from stress concentration, kinking and subsequent propagation of a mode II crack, and the buckling-driven delamination of a thin film from a substrate. The results have demonstrated that the VIB… More >

  • Open Access

    ARTICLE

    Nodal Constraint, Shear Deformation and Continuity Effects Related to the Modeling of Debonding of Laminates, Using Plate Elements

    E. H. Glaessgen1, W.T. Riddell2, I. S. Raju1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 103-116, 2002, DOI:10.3970/cmes.2002.003.103

    Abstract The effects of several critical assumptions and parameters on the computation of strain energy release rates for delamination and debond configurations modeled with plate elements have been quantified. The method of calculation is based on the virtual crack closure technique (VCCT), and models of the upper and lower surface of the delamination or debond that use two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler configurational modeling. Specific issues that are discussed include: constraint of translational degrees of freedom, rotational degrees of freedom… More >

  • Open Access

    ARTICLE

    A Bond Graph Model Validation of an Experimental Single Zone Building

    A. Merabtine1, S. Mokraoui1, R. Benelmir1, N. Laraqi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.2, pp. 215-240, 2012, DOI:10.3970/fdmp.2012.008.215

    Abstract Modeling of the thermal behavior of buildings needs effective strategies of analysis and tools. This is particularly true when conduction of heat through walls and/or slabs has to be properly taken into account. This article is concerned with a new modeling strategy for solving the transient heat conduction equation in a finite medium (with extensive background application to the different elements of a building structure). The developed approach is based on the Bond Graph technique, a graphical modeling language which is particularly suitable to the treatment of problems involving energy transfer. With this model, two typical transient heat conduction situations… More >

  • Open Access

    ARTICLE

    A 3D Computational Model of RC Beam Using Lower Order Elements with Enhanced Strain Approach in the Elastic Range

    Amiya K. Samanta1, Somnath Ghosh2

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 43-52, 2008, DOI:10.3970/cmc.2008.008.043

    Abstract A procedure has been described to carry out three-dimensional elastic analysis of reinforced concrete beam employing finite element technique, which uses lower order elements. The proposed procedure utilizes 8-noded isometric solid /hexahedral elements HCiS18 with enhanced assumed strain (EAS) formulation, recently developed in the literature, to predict load-deformation and internal stresses produced in case of a simply supported RC beams in the elastic regime. It models the composite behaviour of concrete and reinforcements in rigid /perfect bond situation and their mutual interaction in bond-slip condition considering continuous interface elements at the material level. Although, bond-slip relation are very much non-linear… More >

  • Open Access

    ARTICLE

    Progression of failure in fiber-reinforced materials

    R. Han1, M.S. Ingber1, H.L. Schreyer1

    CMC-Computers, Materials & Continua, Vol.4, No.3, pp. 163-176, 2006, DOI:10.3970/cmc.2006.004.163

    Abstract Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interfaces in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks… More >

  • Open Access

    ARTICLE

    Rayleigh-Type Wave in A Rotated Piezoelectric Crystal Imperfectly Bonded on a Dielectric Substrate

    Guoquan Nie1, *, Menghe Wang1

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 257-274, 2019, DOI:10.32604/cmc.2019.04498

    Abstract Propagation characteristics of Rayleigh-type wave in a piezoelectric layered system are theoretically investigated. The piezoelectric layer is considered as a cubic crystal with finite thickness rotated about Y-axis and is imperfectly bonded onto a semi-infinite dielectric substrate. The imperfect interface between the two constituents is assumed to be mechanically compliant and dielectrically weakly conducting. The exact dispersion relations for electrically open or shorted boundary conditions are obtained. The numerical results show that the phase velocity of Rayleigh-type wave is symmetric with respect to the cut orientation of 45。 and can achieve the maximum propagation speed in this orientation. The mechanical… More >

  • Open Access

    ARTICLE

    Effect of An Initial Stress on SH-Type GuidedWaves Propagating in a Piezoelectric Layer Bonded on A Piezomagnetic Substrate

    Guoquan Nie1,2, Jinxi Liu1, Ming Li1

    CMC-Computers, Materials & Continua, Vol.48, No.3, pp. 133-145, 2015, DOI:10.3970/cmc.2015.048.133

    Abstract Propagation of SH-type guided waves in a layered structure with an invariant initial stress is studied, where a piezoelectric thin layer is perfectly bonded on a piezomagnetic substrate. Both the layer and the substrate possess transversely isotropic property. The dispersion relations of SH waves are obtained for four kinds of different electro-magnetic boundary conditions. The effects of initial stress, thickness ratio and electro-magnetic boundary conditions on the propagation behaviors are analyzed in detail. The numerical results show that: 1) The positive initial stresses make the phase velocity increasing, while the negative initial stresses decrease the phase velocity; 2) The smaller… More >

  • Open Access

    ARTICLE

    Wrinkling Analysis in a Film Bonded to a Compressible Compliant Substrate in Large Deformation

    Zhicheng Ou1, Xiaohu Yao1, Xiaoqing Zhang1,2, Xuejun Fan3

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 205-222, 2014, DOI:10.3970/cmc.2014.044.205

    Abstract The buckling of a thin film on a compressible compliant substrate in large deformation is studied. A finite-deformation theory is developed to model the film and the substrate under different original strain-free configurations. The neo-Hookean constitutive relation is applied to describe the substrate. Through the perturbation analysis, the analytical solution for this highly nonlinear system is obtained. The buckling wave number, amplitude and critical condition are obtained. Comparing with the traditional linear model, the buckling amplitude decreases. The wave number increases and relates to the prestrain. With the increment of Poisson’s ratio of the substrate, the buckling wave number increases,… More >

Displaying 91-100 on page 10 of 105. Per Page