Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (105)
  • Open Access

    ARTICLE

    Experimental Study on the Degradation of Bonding Behavior between Reinforcing Bars and Concrete after Corrosion and Fatigue Damage

    Shiqin He*, Jiaxing Zhao, Chunyue Wang, Hui Wang

    Structural Durability & Health Monitoring, Vol.16, No.3, pp. 195-212, 2022, DOI:10.32604/sdhm.2022.08886

    Abstract In marine environments, the durability of reinforced concrete structures such as bridges, which suffer from the coupled effects of corrosion and fatigue damage, is significantly reduced. Fatigue loading can result in severe deterioration of the bonds between reinforcing steel bars and the surrounding concrete, particularly when reinforcing bars are corroded. Uniaxial tension testing was conducted under static loading and fatigue loading conditions to investigate the bonding characteristics between corroded reinforcing bars and concrete. An electrolyte corrosion technique was used to accelerate steel corrosion. The results show that the bond strength was reduced under fatigue loading, although the concrete did not… More >

  • Open Access

    ARTICLE

    Grain Boundary Passivation Modulated by Molecular Doping for High-Performance Perovskite Solar Cells

    Yangyang Hao, Yue Liu*, Guorui Cao*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3505-3519, 2022, DOI:10.32604/jrm.2022.023122

    Abstract Aiming to reduce the defects of perovskite film and improve carrier transport, an organic small molecule, benzo [d]isothiazol-3(2H)-one 1,1-dioxide (OBS), is introduced as an additive in the solution-processing of perovskite and prepare uniform perovskite films with a continuous distribution of OBS at grain boundaries. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy are conducted to reveal the interactions of hydrogen bonding and coordination bonding between OBS and perovskite. Various characterizations (including X-ray diffraction, UV-vis spectroscopy, electrochemical impedance spectroscopy, etc.) are conducted to uncover the effect of OBS on device performance. Consequently, high efficiency of 23.26% is obtained for the OBS-treated… More > Graphic Abstract

    Grain Boundary Passivation Modulated by Molecular Doping for High-Performance Perovskite Solar Cells

  • Open Access

    ARTICLE

    Bending, Compression and Bonding Performance of Cross-Laminated Timber (CLT) Made from Malaysian Fast-Growing Timbers

    Norshariza Mohamad Bhkari1,2,*, Lum Wei Chen1, Anis Azmi2, Muhammad Shaiful Nordin2, Norman Wong Shew Yam3, Zakiah Ahmad2, Lee Seng Hua4

    Journal of Renewable Materials, Vol.10, No.11, pp. 2851-2869, 2022, DOI:10.32604/jrm.2022.022326

    Abstract This study investigated the bending, compression as well as the bonding performance of CLT panels made from fast-growing timber species, i.e., Laran (Neolamarckia cadamba) and Batai (Paraserianthes falcataria). The variables studied were timber species (Laran and Batai), layers of lamination (3-layer and 5-layer), loading direction in bending (in-plane and out-of-plane), loading direction in compression (x-, y-, and z-axis) and different treatment conditions for bonding performance test. The desired outputs of this study were bending and compression properties (strength and stiffness) as well as bonding performance (block shear strength, wood failure percentage and delamination value). The bending and compression test were… More >

  • Open Access

    ARTICLE

    Determination of the Cement Sheath Interface and the Causes of Failure in the Completion Stage of Gas Wells

    Xuesong Xing1, Renjun Xie1, Yi Wu1, Zhiqiang Wu1, Huanqiang Yang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1719-1735, 2022, DOI:10.32604/fdmp.2022.019799

    Abstract

    The bonding quality of the cement sheath interface decreases during well completion because of the change in the casing pressure. To explore the root cause of such phenomena, experiments on the mechanical properties and interface bonding strength of a cement sheath have been carried out taking the LS25-1 high-temperature and high-pressure (HTHP) gas field as an example. Moreover, a constitutive model of the cement sheath has been defined and verified both by means of a full-scale HTHP cement sheath sealing integrity evaluation experiment and three-dimensional finite element simulations. The results show that the low initial cementing surface strength is the… More >

  • Open Access

    ARTICLE

    Strength Performance and Microstructure Characteristic of Naturally-Bonded Fiberboard Composite from Malaysian Bamboo (Bambusa vulgaris)

    Shahril Anuar Bahari1, Mohd Nazarudin Zakaria1, Syaiful Osman1, Falah Abu1, Mohamad Jani Saad2, Reza Hosseinpourpia3,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2581-2591, 2022, DOI:10.32604/jrm.2022.021313

    Abstract This study investigated the mechanical properties and microstructural characteristics of fiberboard composite produced by naturally-bonded Malaysian bamboo fiber (Bambusa vulgaris). The components that obtained through soda pulping of bamboo culms such as fiber and black liquor, were used for the preparation of high-density fibreboard composite at two target densities of 850 and 950 kg/m3. The bamboo fiberboard composite (BFC) were then produced at 200°C and two pressing parameters of 125 and 175 s/mm. The mechanical properties, e.g., flexural strength and internal bonding (IB) of BFC samples were evaluated according to BS EN 310: 1993 and BS EN 319: 1993, respectively. It was… More > Graphic Abstract

    Strength Performance and Microstructure Characteristic of Naturally-Bonded Fiberboard Composite from Malaysian Bamboo (<i>Bambusa vulgaris</i>)

  • Open Access

    REVIEW

    Research Progress of Soybean Protein Adhesive: A Review

    Yantao Xu1, Yufei Han1, Jianzhang Li1, Jing Luo2, Sheldon Q. Shi3, Jingchao Li1, Qiang Gao1,*, An Mao4,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2519-2541, 2022, DOI:10.32604/jrm.2022.020750

    Abstract Traditional formaldehyde-based adhesives rely excessively on petrochemical resources, release toxic gases, and pollute the environment. Plant-derived soybean protein adhesives are eco-friendly materials that have the potential to replace the formaldehyde-based adhesives used to fabricate wood-based panels. However, the poor water resistance, high brittleness, and poor mildew resistance of soybean protein adhesives limit their industrial applications. This article reviews recent research progress in the modification of soybean protein adhesives for improving the bonding performance of adhesives used for wood-based panel fabrication. Modification methods were summarized in terms of water resistance, solid content, and mildew resistance. The modification mechanisms and remaining problems… More >

  • Open Access

    ARTICLE

    BaTiO3/Polyurethane Dielectric Composites with Diels-Alder Bond for Improved Self-Healing Properties

    Junlong Yao1,2, Wei Nie1, Zhengguang Sun2, Huan Yang1,3,*, Yu Guan1, Lin Gao4, Xueliang Jiang1, Mujie Guo1, Chuanxi Xiong5,*

    Journal of Renewable Materials, Vol.10, No.9, pp. 2355-2364, 2022, DOI:10.32604/jrm.2022.019339

    Abstract In general, self-healing dielectric composites are mainly composed of polar hydrogen bonds, which have high hydrophilicity and are unsuitable for humid environment. Dielectric composite with Diels-Alder (D-A) bond contains covalent bonds, it can be adopted as an efficient self-healing material. Here, we construct self-healing barium titanate (BT)/polyurethane (PU) dielectric composites by adopting PU with D-A bond as matrix (BT/ PU-DA). The prepared 10% BT/PU-DA composite exhibits superior self-healing ability than that of PU-DA. Moreover, its dielectric constant can reach 9.3 with a loss of only 0.04 at 1000 Hz and maintain 93% repair effi- ciency of tensile strength. The experimental… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study on Mechanical Properties of Z-pins Reinforced Composites Adhesively Bonded Single-Lap Joints

    Yinhuan Yang1,*, Manfeng Gong1, Xiaoqun Xia1, Linzhi Wu2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 365-378, 2022, DOI:10.32604/cmes.2022.018535

    Abstract The mechanical properties of Z-pins reinforced composites adhesively bonded single-lap joints (SLJs) under un-directional tension loading are investigated by experimental and numerical methods. Three kinds of joint configurations, including SLJs with three/two rows of Z-pins and “I” array of Z-pins, are investigated by tension test. The failure modes and mechanism of reinforced joints with different Z-pins numbers and alignment are analyzed, and the comparison is performed for the failure strengths of no Z-pins and Z-pins reinforced joints. According to experimental results, failure modes of three kinds of joints are all mixed failure. It turns out that the Z-pins are pulled… More >

  • Open Access

    ARTICLE

    Partially Overlapping Channel Assignment Using Bonded and Non-Bonded Channels in IEEE 802.11n WLAN

    Md. Selim Al Mamun1,2, Fatema Akhter1,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3161-3178, 2022, DOI:10.32604/cmc.2022.022214

    Abstract Nowadays, wireless local area network (WLAN) has become prevalent Internet access due to its low-cost gadgets, flexible coverage and hassle-free simple wireless installation. WLAN facilitates wireless Internet services to users with mobile devices like smart phones, tablets, and laptops through deployment of multiple access points (APs) in a network field. Every AP operates on a frequency band called channel. Popular wireless standard such as IEEE 802.11n has a limited number of channels where frequency spectrum of adjacent channels overlaps partially with each other. In a crowded environment, users may experience poor Internet services due to channel collision i.e., interference from… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Ice Rubble with a Freeze-Bond Model in Dilated Polyhedral Discrete Element Method

    Biyao Zhai, Lu Liu, Shunying Ji*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 1-22, 2022, DOI:10.32604/cmes.2022.018652

    Abstract Freezing in ice rubble is a common phenomenon in cold regions, which can consolidate loose blocks and change their mechanical properties. To model the cohesive effect in frozen ice rubble, and to describe the fragmentation behavior with a large external forces exerted, a freeze-bond model based on the dilated polyhedral discrete element method (DEM) is proposed. Herein, imaginary bonding is initialized at the contact points to transmit forces and moments, and the initiation of the damage is detected using the hybrid fracture model. The model is validated through the qualitative agreement between the simulation results and the analytical solution of… More >

Displaying 21-30 on page 3 of 105. Per Page