Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    PROCEEDINGS

    Transition from Crack-Type to Spall-Type Failure Mode in Interfacial Debonding Under Tensile Loading

    Meng Wang1, Jay Fineberg2, Alan Needleman3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011000

    Abstract Brittle materials fail by means of rapid cracks. At their tips, tensile cracks dissipate elastic energy stored in the surrounding material to create newly fractured surfaces, precisely maintaining 'energy balance' by exactly equating the energy flux with dissipation. Using energy balance, fracture mechanics perfectly describes crack motions; accelerating from nucleation to their maximal speed of cR, the Rayleigh wave speed. A tensile crack speed greater than cR is generally considered impossible [1]. Recently, a new mode of tensile crack propagation faster than cR that is not incorporated in classical fracture mechanics has been predicted in… More >

  • Open Access

    PROCEEDINGS

    Influence of Resin Matrix Rigidity on the Ballistic Performance of PBO and Aramid Fiber Reinforced Composites

    Jia Liu, Yuwu Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011553

    Abstract The rigidity of the resin matrix is a critical factor affecting the impact resistance of composites [1]. However, the intrinsic relationship between resin matrix rigidity and ballistic performance remains insufficiently understood. To reveal the influence mechanisms of resin matrix rigidity on ballistic performance, this study compares the ballistic limits of PBO-140, PBO-200, Aramid III, and Aramid II fiber reinforced composites with resin matrices of different rigidities (epoxy resin, PX90, and PX30) through ballistic impact tests. The experimental results show that, the ballistic limit of composites with PX90 resin is higher than that of composites with… More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Inclusion Stiffness and Interfacial Debonding on the Elastic Modulus and Strength of Rubberized Mortar

    Cristian Martínez-Fuentes1, Pedro Pesante2,*, Karin Saavedra3, Paul Oumaziz4

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 581-595, 2025, DOI:10.32604/cmc.2025.065746 - 29 August 2025

    Abstract Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties. The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete. This study employs finite element simulations to investigate the elastic properties of rubberized mortar (RuM), considering the influence of inclusion stiffness and interfacial debonding. Different homogenization schemes, including Voigt, Reuss, and mean-field approaches, are implemented using DIGIMAT and ANSYS. Furthermore, the influence of the interfacial transition zone (ITZ) between mortar… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study of Bonding Capacity of Interface between Ultra-High Performance Concrete and Steel Tube

    Ruikun Xu1, Jiu Li1, Wenjie Li1, Wei Zhang2,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 285-305, 2025, DOI:10.32604/sdhm.2024.057513 - 15 January 2025

    Abstract This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete (UHPC) and steel tubes through push-out tests. This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics. The results show that as the enhancement of the steel tube wall thickness, the ultimate bond strength at the interface improves significantly, whereas the initial bond strength exhibits only slight variations. The influence of steel fiber volumetric ratio presents a nonlinear trend, with initial bond strength decreasing at low fiber content and increasing More >

  • Open Access

    PROCEEDINGS

    Enhancing the Interlayer and Flexural Performance with SHCC as Bonding Agents in 3D Concrete Printing

    Fei Teng1, Yiwei Weng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012282

    Abstract 3D concrete printing (3DCP) has challenges in weak interlayer bond strength and steel reinforcement integration. Existing methods to improve the interlayer bond strength and integrate steel reinforcement have limitations in automatic operation and limited mechanical performance improvement. Strain hardening cementitious composites (SHCC), with the high tensile strength and tensile strain capacity, have the potential to achieve self-reinforced structures in 3DCP. Nevertheless, the wider adoption of SHCC in 3DCP is limited by the high cost of fibers and fiber agglomeration during printing.
    To fill the gap, this study investigates the use of SHCC as bonding agent of… More >

  • Open Access

    ARTICLE

    Predominant Leptadenia pyrotechnica Alkali-Treated Fiber Composites: Characteristics Analysis

    Aruna M. Pugalenthi*, Khaoula Khlie

    Journal of Renewable Materials, Vol.12, No.11, pp. 1879-1893, 2024, DOI:10.32604/jrm.2024.055747 - 22 November 2024

    Abstract With growing environmental concerns and the depletion of oil reserves, the need to replace synthetic fibres with sustainable alternatives in composite materials has become increasingly urgent. This study investigates the potential of Leptadenia pyrotechnica fibre as a sustainable reinforcement material in hybrid composites alongside E-glass fibres. The primary objectives are to assess these hybrid composites’ mechanical properties, structural integrity, and performance. To achieve this, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were employed to analyze the microstructure and chemical composition of the composites. At the same time, mechanical testing focused on properties such… More >

  • Open Access

    PROCEEDINGS

    Mechanics Model of Face-Core and Inner Core Debonding of Composite Honeycomb Sandwich Structures

    Jian Xiong1,*, Pengcheng Xue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.011785

    Abstract Carbon fiber-reinforced plastic (CFRP) composite sandwich structures, due to their excellent mechanical properties and lightweight characteristics, are widely used in aerospace, marine, automotive, and wind turbine blade structures [1]. Different from traditional sandwich structures, composite honeycomb sandwich structures exhibit brittle properties, potentially leading to sudden and catastrophic debonding failure without any warning. Consequently, the interfaces between the face-core and the inner core may become the weakest parts of the structural system.
    This paper presents a theoretical and experimental investigation into the debonding behavior of the face-core and inner core in composite honeycomb sandwich structures. Based on… More >

  • Open Access

    ARTICLE

    Adhesion of Technical Lignin-Based Non-Isocyanate Polyurethane Adhesives for Wood Bonding

    Jaewook Lee1, Byung-Dae Park1,*, Qinglin Wu2

    Journal of Renewable Materials, Vol.12, No.7, pp. 1187-1205, 2024, DOI:10.32604/jrm.2024.049948 - 21 August 2024

    Abstract Lignin is the most abundant aromatic natural polymer, and receiving great attention in replacing various petroleum-based polymers. The aim of this study is to investigate the feasibility of technical lignin as a polyol for the synthesis of non-isocyanate polyurethane (NIPU) adhesives to substitute current polyurethane (PU) adhesives that have been synthesized with toxic isocyanate and polyols. Crude hardwood kraft lignin (C-HKL) was extracted from black liquor from a pulp mill followed by acetone fractionation to obtain acetone soluble-HKL (AS-HKL). Then, C-HKL, AS-HKL, and softwood sodium lignosulfonate (LS) were used for the synthesis of technical lignin-based… More > Graphic Abstract

    Adhesion of Technical Lignin-Based Non-Isocyanate Polyurethane Adhesives for Wood Bonding

  • Open Access

    ARTICLE

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

    Shuai Chen1, Yinwei Ma2, Zhongshu Wang2, Zongmei Xu3, Song Zhang1, Jianle Li1, Hao Xu1, Zhanjun Wu1,*

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 125-141, 2024, DOI:10.32604/sdhm.2024.042594 - 22 March 2024

    Abstract The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life. To this end, distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages, such as lightweight and ease of embedding. However, identifying the precise location of damage from the optical fiber signals remains a critical challenge. In this paper, a novel approach which namely Modified Sliding Window Principal Component Analysis (MSWPCA) was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors. The proposed method More > Graphic Abstract

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

  • Open Access

    ARTICLE

    Bond-Slip Behavior of Steel Bar and Recycled Steel Fibre-Reinforced Concrete

    Ismail Shah1,2, Jing Li1,3,4,*, Nauman Khan5, Hamad R. Almujibah6, Muhammad Mudassar Rehman2, Ali Raza7, Yun Peng3,4

    Journal of Renewable Materials, Vol.12, No.1, pp. 167-186, 2024, DOI:10.32604/jrm.2023.031503 - 23 January 2024

    Abstract Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability. It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics. This study examines the key influencing factors that affect the behavior of this material, such as the steel fiber volume ratio, recycled aggregate replacement rate, concrete strength grade, anchorage length, and stirrup constraint. The study investigates the bond failure morphology, bond-slip, and bond strength constitutive relationship of steel fiber recycled concrete. The results show that the addition of steel fibers at 0.5%,… More >

Displaying 1-10 on page 1 of 48. Per Page