Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (623)
  • Open Access

    PROCEEDINGS

    Damping Properties in Gradient Nano-Grained Metals

    Sheng Qian1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010116

    Abstract Applications such as aircrafts and electronic devices require the noise and vibration reduction without much extra burden, such as extra damping systems. High damping metallic materials that exhibit the ability to dissipate mechanical energy are potential candidates in these application via directly being part of the functional components, such as the frame materials. The energy damping in polycrystalline metals depends on the activities of defects such as dislocation and grain boundary. However, operating defects has the opposite effect on strength and damping capacity. In the quest for high damping metals, maintaining the level of strength is desirable in practice. In… More >

  • Open Access

    PROCEEDINGS

    High-Precision Isoparametric Hole, Ring, Tube, Disk, Sphere Boundary Element and Their Applications in Mechanics Analysis

    Yongtong Zheng1,* , Yijun Liu1, Xiaowei Gao1,2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09774

    Abstract Recently, a series of isoparametric boundary elements have been constructed to simulate the shape of holes, tubes, disks, rings and spheres based on the Lagrange interpolation formulation and the closure condition at two ends of an arc. These elements can simulate the models which contain the shapes mentioned above with less nodes and less elements than the conventional boundary elements. However, the basis of those elements, i.e., hole elements, have the poor accuracy when the number of nodes is less than 6. To improve these elements, two kinds of improvements are proposed in this study. The first one let more… More >

  • Open Access

    PROCEEDINGS

    An Explicit and Non-Iterative Moving-Least-Squares Immersed-Boundary Method and Its Applications in the Aorta Hemodynamics with Type B Intramural Hematoma

    Wenyuan Chen1, Tao Zhang2, Yantao Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09754

    Abstract Based on the moving-least-squares immersed boundary method, we proposed a new technique to improve the calculation of the volume force representing the body boundary. For boundary with simple geometry, we theoretically analyze the error between the desired volume force at boundary and the actual force applied by the original method. The ratio between the two forces is very close to a constant and exhibits a very narrow distribution. A spatially uniform coefficient is then introduced to correct the force and can be fixed by the least-square method over all boundary markers. Such method is explicit and non-iterative, and is easy… More >

  • Open Access

    ARTICLE

    A Subdivision-Based Combined Shape and Topology Optimization in Acoustics

    Chuang Lu1, Leilei Chen2,3, Jinling Luo4, Haibo Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 847-872, 2024, DOI:10.32604/cmes.2023.044446

    Abstract We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces. The existing structural optimization methods mainly contain shape and topology schemes, with the former changing the surface geometric profile of the structure and the latter changing the material distribution topology or hole topology of the structure. In the present acoustic performance optimization, the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure, the artificial density of the sound absorbing material covered on the… More >

  • Open Access

    ARTICLE

    Wavelet Multi-Resolution Interpolation Galerkin Method for Linear Singularly Perturbed Boundary Value Problems

    Jiaqun Wang1,2, Guanxu Pan2, Youhe Zhou2, Xiaojing Liu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 297-318, 2024, DOI:10.32604/cmes.2023.030622

    Abstract In this study, a wavelet multi-resolution interpolation Galerkin method (WMIGM) is proposed to solve linear singularly perturbed boundary value problems. Unlike conventional wavelet schemes, the proposed algorithm can be readily extended to special node generation techniques, such as the Shishkin node. Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients. All the shape functions possess the Kronecker delta property, making the imposition of boundary conditions as easy as that in the finite element method. Four numerical examples are studied to demonstrate the validity and accuracy of the proposed… More >

  • Open Access

    ARTICLE

    Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies

    Zonglin Li1,2, Zhenyu Gao2, Yijun Liu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2159-2175, 2024, DOI:10.32604/cmes.2023.030920

    Abstract The boundary element method (BEM) is a popular method for solving acoustic wave propagation problems, especially those in exterior domains, owing to its ease in handling radiation conditions at infinity. However, BEM models must meet the requirement of 6–10 elements per wavelength, using the conventional constant, linear, or quadratic elements. Therefore, a large storage size of memory and long solution time are often needed in solving higher-frequency problems. In this work, we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM. The first one uses a… More > Graphic Abstract

    Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies

  • Open Access

    ARTICLE

    BOUNDARY LAYER STAGNATION-POINT FLOW OF CASSON FLUID AND HEAT TRANSFER TOWARDS A SHRINKING/STRETCHING SHEET

    Krishnendu Bhattacharyya*

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-9, 2013, DOI:10.5098/hmt.v4.2.3003

    Abstract The steady boundary layer stagnation-point flow of Casson fluid and heat transfer towards a shrinking/stretching sheet is studied. Appropriate similarity transformations are employed to transform the governing partial differential equations into the self-similar ordinary differential equations and those are then solved numerically using very efficient shooting method. The numerical computations are carried out for several values of parameters involved (especially, velocity ratio parameter and Casson parameter) to know the possibility of similarity solution for the boundary layer stagnation-point flow. It is found that the range of velocity ratio parameter for which similarity solution exists is unaltered for any change in… More >

  • Open Access

    ARTICLE

    THE STUDY OF TEMPERATURE PROFILE INSIDE WAX DEPOSITION LAYER OF WAXY CRUDE OIL IN PIPELINE

    Zhen Tiana,*, Wenbo Jina, Lei Wangb, Zhi Jinc

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.5

    Abstract Taking the axial heat conduction of wax deposition layer into account, a two-dimensional heat transfer model of calculating the temperature profile inside wax deposition layer was deduced and established based on the energy balance equation, the finite difference method was used to solve this model, and the influence of axial heat conduction on the distribution law of temperature profile inside the wax deposition layer under different boundary conditions and thickness were discussed. The results showed that: Temperature profile inside wax deposition layer in middle region of testing pipe section was mainly influenced by axial heat conduction under boundary conditions of… More >

  • Open Access

    ARTICLE

    MHD CONVECTIVE BOUNDARY LAYER FLOW TOWARDS A VERTICAL SURFACE IN A POROUS MEDIUM WITH RADIATION, CHEMICAL REACTION AND INTERNAL HEAT GENERATION

    Emmanuel Maurice Arthur*, Timothy Ayando, Yakubu Ibrahim Seini

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-10, 2015, DOI:10.5098/hmt.6.21

    Abstract The combined effects of chemical reaction and viscous dissipation on hydromagnetic mixed convective flow towards a vertical plate embedded in a highly porous medium with radiation and internal heat generation has been examined. The governing boundary layer equations have been transformed to a two-point boundary value problem using a local similarity approach and solved numerically using the Newton Raphson shooting method alongside the Fourth-order Runge - Kutta algorithm. The effects of various embedded parameters on fluid velocity, temperature and concentration have been presented graphically whilst the skin friction coefficient and the rates of heat and mass transfers have been tabulated… More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION IN BOUNDARY LAYER FLOW OF A MICRO POLAR FLUID OVER A STRETCHING SHEET EMBEDDED IN A HIGHLY ABSORBING MEDIUM

    M. Y. Abdollahzadeh Jamalabadi*

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-13, 2015, DOI:10.5098/hmt.6.7

    Abstract An analytical study of entropy generation in steady boundary layer flow, heat and mass transfer characteristic of 2D convective flow of a micro polar fluid over a stretching sheet embedded through a highly absorbing medium is performed. The governing equations are continuity, momentum boundary layer, micro rotation, and energy takes into account of Rosseland approximation for thermal radiation sources are solved analytically. The governing system of partial differential equations is first transformed into a system of non-linear ordinary differential equations using similarity transformation. The transformed equations are non-linear coupled differential equations which are then linearized by quasi-linearization method and solved… More >

Displaying 11-20 on page 2 of 623. Per Page