Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    MHD BOUNDARY LAYER FLOW AND HEAT TRANSFER OF A NANOFLUID PAST A RADIATIVE AND IMPULSIVE VERTICAL PLATE

    G. Dharmaiaha,†, N. Vedavathib , CH. Baby Ranic , K.S. Balamurugand

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.14

    Abstract The time-dependent flow past an impulsively started vertical infinite plate in a viscous electrically conducting natural convective incompressible Nano-fluid is considered in this article by taking into account the effects of heat absorption, heat generation and radiation. An analytical study is performed to obtain exact solutions for water-based Nano-fluid TiO2. The dimensionless governing equations for this investigation are solved analytically by using the small perturbation Technique. The effects of various physical parameters on velocity, temperature fields are presented graphically. With the aid of these, the expression for the skin-friction and Nusselt number profiles was done with the help of tables. More >

  • Open Access

    ARTICLE

    A STUDY ON MHD BOUNDARY LAYER FLOW ROTATING FRAME NANOFLUID WITH CHEMICAL REACTION

    N. Vedavathia , G. Dharmaiahb,* , K.S. Balamuruganc, K. Ramakrishnad

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.10

    Abstract The effect of chemical reaction on MHD free convection heat transfer flow of a nanofluid bounded a semi-infinite flat surface in a rotating frame of reference is theoretically investigated. The velocity along the plate (slip velocity) is assumed to oscillate on time with constant frequency. The analytical solutions of different water based nanofluids containing TiO2, Al2O3, Ag, Cu and CuO of the boundary layers are assumed, to keep the problem as realistic as possible. The dimensionless governing equations for this investigation are solved analytically by using the small perturbation Technique. The effects of various physical parameters on velocity, temperature and… More >

  • Open Access

    ARTICLE

    STEADY MHD FLOW OVER A YAWED CYLINDER WITH MASS TRANSFER

    A. Sahaya Jenifera , P. Saikrishnana,*, J. Rajakumarb

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.4

    Abstract This paper examines the steady magnetohydrodynamic (MHD) flow of water over a yawed cylinder with variable fluid properties and non-uniform mass transfer. The impact of viscous dissipation is taken into consideration. The velocity and temperature fields are governed by coupled nonlinear partial differential equations together with boundary constraints. These governing equations are converted to dimensionless form with suitable non-similar transformations and then solved using an implicit finite difference method and the quasi-linearization technique. The results indicate that the yaw angle enhancement declines the skin friction coefficient in the axial direction and the heat transfer coefficient. It is also ascertained that… More >

  • Open Access

    ARTICLE

    CASSON FLUID FLOW DUE TO STRETCHING SHEET WITH MAGNETIC EFFECT AND VARIABLE THERMAL CONDUCTIVITY

    M. Y. Dhangea,*, G. C. Sankada, Ishwar Maharudrappab

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.36

    Abstract The present paper investigates the impacts of heat transfer and magnetic field on the boundary layer flow of Casson fluid over a linearly stretching sheet. The researchers have introduced analytical and numerical solutions for the momentum and energy equations by transforming the equations into the system of ordinary differential equations with the aid of the similarity transformations technique. The velocity and temperature profiles for pertinent constraints like Casson fluid constraint, Chandrasekhar number, Prandtl number, and thermal conductivity are presented through graphs. The influence of the wall shear stress and the Prandtl number increases while the boundary layer thickness decreases. Further,… More >

  • Open Access

    ARTICLE

    MHD Boundary Layer Flow of a Power-Law Nanofluid Containing Gyrotactic Microorganisms Over an Exponentially Stretching Surface

    Mohamed Abd El-Aziz1, 2, A. M. Aly1, 3, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 525-549, 2020, DOI:10.32604/cmc.2020.08576

    Abstract This study focusses on the numerical investigations of boundary layer flow for magnetohydrodynamic (MHD) and a power-law nanofluid containing gyrotactic microorganisms on an exponentially stretching surface with zero nanoparticle mass flux and convective heating. The nonlinear system of the governing equations is transformed and solved by Runge-Kutta-Fehlberg method. The impacts of the transverse magnetic field, bioconvection parameters, Lewis number, nanofluid parameters, Prandtl number and power-law index on the velocity, temperature, nanoparticle volume fraction, density of motile microorganism profiles is explored. In addition, the impacts of these parameters on local skin-friction coefficient, local Nusselt, local Sherwood numbers and local density number… More >

  • Open Access

    ARTICLE

    Homotopy Analysis of Natural Convection Flows with Effects of Thermal and Mass Diffusion

    Wei-Chung Tien1, Yue-Tzu Yang1, Cha’o-Kuang Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 447-462, 2012, DOI:10.3970/cmes.2012.085.447

    Abstract Both buoyancy effects of thermal and mass diffusion in the natural convection flow about a vertical plate are considered in this paper. The non-linear coupled differential governing equations for velocity, temperature and concentration fields are solved by using the homotopy analysis method. Without the need of iteration, the obtained solution is in the form of an infinite power series which indicates those series have high accuracy when comparing it with other-generated by the traditional method. The impact of the Prandtl number, Schmidt number and the buoyancy parameter on the flow are widely discussed in detail. More >

  • Open Access

    ARTICLE

    Heat Transfer in FHD Boundary Layer Flow with Temperature Dependent Viscosity over a Rotating Disk

    Paras Ram1,2, Vikas Kumar3

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 179-196, 2014, DOI:10.3970/fdmp.2014.010.179

    Abstract The present study is carried out to examine the effects of temperature dependent variable viscosity on the three dimensional steady axi-symmetric Ferrohydrodynamic (FHD) boundary layer flow of an incompressible electrically nonconducting magnetic fluid in the presence of a rotating disk. The disk is subjected to an externally applied magnetic field and is maintained at a uniform temperature. The nonlinear coupled partial differential equations governing the boundary layer flow are non dimensionalized using similarity transformations and are reduced to a system of coupled ordinary differential equations. To study the effects of temperature dependent viscosity on velocity profiles and temperature distribution within… More >

Displaying 11-20 on page 2 of 17. Per Page