Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    A Geometrically Nonlinear Nine-Node Solid Shell Element Formulation with Reduced Sensitivity to Mesh Distortion

    Keejoo Lee1, Chahngmin Cho2, Sung W. Lee1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 339-350, 2002, DOI:10.3970/cmes.2002.003.339

    Abstract A geometrically nonlinear assumed strain formulation is introduced in conjunction with bubble function displacements to improve the performance of a nine-node solid shell element. The assumed strain field has been carefully selected to avoid both element locking and undesirable spurious kinematic modes. The results of numerical tests demonstrate that the present approach leads to an element that is significantly less sensitive to mesh distortion than the existing element. More >

  • Open Access

    ARTICLE

    Node Placement Method by Bubble Simulation and Its Application

    Ying Liu1, Yufeng Nie2, Weiwei Zhang2, Lei Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.1, pp. 89-110, 2010, DOI:10.3970/cmes.2010.055.089

    Abstract In the light of the ideas and treatment technologies about molecular dynamics simulation and bubble meshing, a new approach of node placement for the meshless method called node placement method by bubble simulation (NPBS method), is proposed. Nodes are seen as the centers of the bubbles which can be moved by their interacting forces. Through dynamic simulation, bubbles are placed into a near-optimal configuration, and the centers of bubbles will form a good-quality node distribution in the domain. This process doesn't need updating the mesh connection constantly, i.e., is totally meshfree. Some example results show that the uniform point sets… More >

  • Open Access

    ARTICLE

    Parametric Study of Bubble Kinematic Behaviour in a Centrifugal Vacuum Separator

    Yuan Chen1, Honggang Duan1, Fei Yu1, Xingyu Zhao1, Han Xu1, Jun Gao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.2, pp. 127-142, 2015, DOI:10.3970/fdmp.2015.011.127

    Abstract The dynamics of dispersed bubbles in a centrifugal separator are investigated with the aim to improve the efficiency of the system. The prototype separator consists of a rotor, a base, a diverting disc, a shaft, an oil trapping impeller, a central pipe, an inlet section for contaminated oil, an outlet section for purified oil and an air outlet. A hydrodynamic model is developed to predict the complex influence of parameters such as the centrifugal force and vacuum pressure. In particular, three different force models are selected to analyze the effect of the added mass and Basset forces (also including inertia,… More >

  • Open Access

    ARTICLE

    Dynamics of a Single Air Bubble Rising in a Thin Gap Filled with Magnetic Fluids

    Y.Q. He, Q.C. Bi1, D.X. Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.4, pp. 357-370, 2011, DOI:10.3970/fdmp.2011.007.357

    Abstract The behavior of a single air bubble rising in magnetic fluids without magnetic fields is visualized using a mini-gap between two parallel vertical glass plates. Water-based Fe3O4 magnetic fluids with particle volume concentration of 6.33 % and density 1261.96 kgm - 3 are filled in these gaps and a single air bubble is produced through the orifice at the bottom of the gap. The thicknesses of the gaps are 1 and 2 mm, respectively. Diameters of the orifices are 0.64 and 1.02 mm for 1 mm gap, and 0.64, 1.02 and 1.6 mm for 2 mm gap. In addition, four… More >

  • Open Access

    ARTICLE

    A VOF-Based Conservative Method for the Simulation of Reactive Mass Transfer from Rising Bubbles

    D. Bothe1,2, M. Kröger1, H.-J. Warnecke3

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 303-316, 2011, DOI:10.3970/fdmp.2011.007.303

    Abstract In this paper numerical results on reactive mass transfer from single gas bubbles to a surrounding liquid are presented. The underlying numerical method is based on the solution of the incompressible two-phase Navier-Stokes equations. The Volume-of-Fluid method is applied for the description of the liquid-gas interface. Within the numerical approach the concentration of the transfer component is represented by two separate variables, one for each phase. Numerical results are in good agreement with experimental data. More >

  • Open Access

    ARTICLE

    Effect of Bubble Size and Location on Segregation Pattern and Interface Shape in Microgravity Crystal Growth

    M. Kassemi1, Y. Wang2, S. Barsi1,3, B.T.F. Chung2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 27-46, 2006, DOI:10.3970/fdmp.2006.002.027

    Abstract Microgravity experiments, especially materials processing experiments, have often been hampered by presence of unwanted bubbles. In this work, the effect of thermocapillary convection generated by a bubble on the Bridgman growth of a dilute binary alloy in microgravity is investigated numerically. The model is based on the quasi-steady Navier-Stokes equations for the fluid flow in the melt coupled with the conservation equations for transport of energy and species in the growth ampoule. Numerical results indicate three different growth regimes based on the distance between the bubble and the growth interface: a diffusion dominated regime that is separated from a well-mixed… More >

  • Open Access

    ARTICLE

    Phase field models and Marangoni flows

    Rodica Borcia1,2, Michael Bestehorn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 287-294, 2007, DOI:10.3970/fdmp.2007.003.287

    Abstract We developed a phase field model for Marangoni convection in compressible fluids of van der Waals type far from criticality. The theoretical description is based on the Navier-Stokes equation with extra terms responsible for describing the Marangoni effect, the classical heat equation, and the continuity equation. The model previously developed for a two-layer geometry is now extended to drops and bubbles. Finally, we report on 2D numerical simulations for drop Marangoni migration in a vertical temperature gradient. More >

  • Open Access

    ARTICLE

    Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method.

    Mark Sussman1, Mitsuhiro Ohta2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.1, pp. 21-36, 2007, DOI:10.3970/fdmp.2007.003.021

    Abstract In this paper, we describe new techniques for numerically approximating two-phase flows. Specifically, we present new techniques for treating the viscosity and surface tension terms that appear in the Navier-Stokes equations for incompressible two-phase flow. Our resulting numerical method has the property that results computed using our two-phase algorithm approach the corresponding "one-phase'' algorithm in the limit of zero gas density/viscosity; i.e. the two-phase results approach the one-phase free-boundary results in the limit that the gas is assumed to become a uniform pressure void. By grid convergence checks and comparison with previous experimental data, we shall demonstrate the advantages of… More >

  • Open Access

    ARTICLE

    A Computational Study of Bubble Motion in Newtonian and Viscoelastic Fluids

    Edwin Jim ´enez1, Mark Sussman2, Mitsuhiro Ohta3

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 97-108, 2005, DOI:10.3970/fdmp.2005.001.097

    Abstract The aim of this paper is to utilize a numerical model to compute bubble motion in quiescent Newtonian and viscoelastic liquids. For our numerical method, we use a coupled level set and volume-of-fluid method with a second order treatment for the jump conditions related to surface tension. We investigate axisymmetric gas-liquid systems with large density and viscosity ratios as well as buoyancy-driven flows with complex changes in topology. We present comparisons to previous computational results as well as experimental results. More >

  • Open Access

    ARTICLE

    Nanobubbles at Water-Solid Interfaces: Calculation of the Contact Angle Based on a Simple Model

    H. Elnaiem1, D. Casimir1, P. Misra1, S.M. Gatica1,2

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 23-34, 2009, DOI:10.3970/cmc.2009.014.023

    Abstract Nanobubbles have been found to form at the interface of water and solid surfaces. We examine the conditions for such bubbles to form and estimate the pressure inside the bubble based on thermodynamic considerations. Using a simple model we calculate the contact angle for a wide range of temperatures and hypothetical substrates possessing a continuous range of strengths. We show that as the temperature increases the shape of a bubble changes continuously from a spherical cap with low curvature to a complete sphere. An equivalent effect results from either increasing the strength of the solid or decreasing the surface tension.… More >

Displaying 31-40 on page 4 of 40. Per Page