Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    THERMOPHORESIS AND BUOYANCY EFFECTS ON CHEMICALLY REACTIVE UPPER CONVECTED MAXWELL FLUID FLOW INDUCED BY AN EXPONENTIALLY STRETCHING SHEET: APPLICATION OF CATTANEO-CHRISTOV HEAT FLUX

    N.Vijayaa,* , P. Krishna Jyothib, A. Anupamac, R. Leelavathid, K. Ambicae

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.23

    Abstract The main intention of this study is to explore Maxwell fluid under the influence of thermophoresis and buoyancy forces induced by exponentially stretching sheet under chemical reaction. Cattaneo –Christov heat flux model is used to explore heat and mass characteristics with variable magnetic field, and chemical reaction. Variables of similarity were induced to transmute partial differential equations into dimensionless equations and are resolved numerically by elegant method bvp 4c. Behavior of various critical parameters on velocity, temperature and concentrations is graphically presented and discussed. Non Newtonian nature of the Maxwell fluid is clearly explored by the Maxwell parameter, it was… More >

  • Open Access

    ARTICLE

    Buoyancy Effects in the Peristaltic Flow of a Prandtl-Eyring Nanofluid with Slip Boundaries

    Hina Zahir*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1507-1519, 2023, DOI:10.32604/fdmp.2023.022520

    Abstract The interaction of nanoparticles with a peristaltic flow is analyzed considering a Prandtl-Eyring fluid under various conditions, such as the presence of a heat source/sink and slip effects in channels with a curvature. This problem has extensive background links with various fields in medical science such as chemotherapy and more in general nanotechnology. A similarity transformation is used to turn the original balance equations into a set of ordinary differential equations, which are then integrated numerically. The investigation reveals that nanofluids have valuable thermal capabilitises. More >

  • Open Access

    ARTICLE

    Buoyancy driven Flow of a Second-Grade Nanofluid flow Taking into Account the Arrhenius Activation Energy and Elastic Deformation: Models and Numerical Results

    R. Kalaivanan1, N. Vishnu Ganesh2, Qasem M. Al-Mdallal3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 319-332, 2021, DOI:10.32604/fdmp.2021.012789

    Abstract The buoyancy driven flow of a second-grade nanofluid in the presence of a binary chemical reaction is analyzed in the context of a model based on the balance equations for mass, species concentration, momentum and energy. The elastic properties of the considered fluid are taken into account. The two-dimensional slip flow of such non-Newtonian fluid over a porous flat material which is stretched vertically upwards is considered. The role played by the activation energy is accounted for through an exponent form modified Arrhenius function added to the Buongiorno model for the nanofluid concentration. The effects of thermal radiation are also… More >

  • Open Access

    ABSTRACT

    Heat and mass transfer by natural convection in porous media due to opposing buoyancy effects with Boundary Domain Integral Method

    Janja Kramer, Renata Jecl, Leopold Skerget

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.4, pp. 147-148, 2009, DOI:10.3970/icces.2009.012.147

    Abstract A numerical study of double diffusive natural convection in porous media due to opposing buoyancy forces is reported, using the Boundary Domain Integral Method (BDIM). There have been several reported studies dealing with natural convection in porous media, mainly because of its importance in several industrial and technological applications. Less attention, however, has been dedicated to the so-called double diffusive problems, where density gradients occur due to the effects of combined temperature and concentration buoyancy. The current investigation is focused on the special problem, where the thermal and solutal buoyancy forces are opposing each other.
    The mathematical model of fluid… More >

  • Open Access

    ARTICLE

    Heat and Mass Transfer due to Natural Convection along a Wavy Vertical Plate with Opposing Thermal and Solutal Buoyancy Effects

    M. Si Abdallah1, B. Zeghmati2

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 261-277, 2014, DOI:10.3970/fdmp.2014.010.261

    Abstract In the present work, a numerical analysis is performed of the combined effects of (opposing) thermal and solutal buoyancy in the presence of a wavy (vertical) surface. The boundary layer equations and related boundary conditions are discretized using a finite volume scheme and solved numerically using a Gauss-Seidel algorithm. The influence of the wavy geometry (in terms of related wavelength L and amplitude a) and the buoyancy ratio N on the local Nusselt and Sherwood numbers and on the skin-friction coefficient are studied in detail. Results show that when Pr < Sc, negative values of the buoyancy parameter, N tend… More >

Displaying 1-10 on page 1 of 5. Per Page