Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model

    Qin Qian1, Mingjing Lu1,2,*, Anhai Zhong1, Feng Yang1, Wenjun He1, Min Li1

    Energy Engineering, Vol.121, No.8, pp. 2167-2190, 2024, DOI:10.32604/ee.2024.049430

    Abstract The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics, engineering quality, and well conditions. These relationships, nonlinear in nature, pose challenges for accurate description through physical models. While field data provides insights into real-world effects, its limited volume and quality restrict its utility. Complementing this, numerical simulation models offer effective support. To harness the strengths of both data-driven and model-driven approaches, this study established a shale oil production capacity prediction model based on a machine learning combination model. Leveraging fracturing development data from 236 wells… More >

  • Open Access

    ARTICLE

    Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques

    Rabar H. Faraj1,*, Hemn Unis Ahmed2,3, Hardi Saadullah Fathullah4, Alan Saeed Abdulrahman2, Farid Abed5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2925-2954, 2024, DOI:10.32604/cmes.2023.029392

    Abstract Plain concrete is strong in compression but brittle in tension, having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures, even when steel reinforcing is present. In order to address these challenges, short polymer fibers are randomly dispersed in a cement-based matrix to form a highly ductile engineered cementitious composite (ECC). This material exhibits high ductility under tensile forces, with its tensile strain being several hundred times greater than conventional concrete. Since concrete is inherently weak in tension, the tensile strain capacity (TSC) has become one of the most… More >

  • Open Access

    ARTICLE

    A Prediction Method of Trend-Type Capacity Index Based on Recurrent Neural Network

    Wenxiao Wang1,*, Xiaoyu Li1,*, Yin Ding1, Feizhou Wu2, Shan Yang3

    Journal of Quantum Computing, Vol.3, No.1, pp. 25-33, 2021, DOI:10.32604/jqc.2021.016346

    Abstract Due to the increase in the types of business and equipment in telecommunications companies, the performance index data collected in the operation and maintenance process varies greatly. The diversity of index data makes it very difficult to perform high-precision capacity prediction. In order to improve the forecasting efficiency of related indexes, this paper designs a classification method of capacity index data, which divides the capacity index data into trend type, periodic type and irregular type. Then for the prediction of trend data, it proposes a capacity index prediction model based on Recurrent Neural Network (RNN), More >

Displaying 1-10 on page 1 of 3. Per Page