Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Structural Design and Analysis of a Booster Arm Made of a Carbon Fiber Reinforced Epoxy Composite Material

    Songhua Hu*, Lixiong Sun, Hongying Xiong*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1083-1088, 2022, DOI:10.32604/fdmp.2022.019038

    Abstract An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method. The mechanical properties are also determined through stretching and compression performance tests. It is found that the surface treatment of the fibers causes the silane coupling agent to undergo a chemical reaction on the surface of the glass fiber. The used material succeeds in producing significant vibrations damping (vibration attenuation effect is superior to that obtained with conventional alloy materials). More >

  • Open Access

    ARTICLE

    Damage Detection for CFRP Based on Planar Electrical Capacitance Tomography

    Wenru Fan, Chi Wang*

    Structural Durability & Health Monitoring, Vol.14, No.4, pp. 303-314, 2020, DOI:10.32604/sdhm.2020.011009

    Abstract Due to the widespread use of carbon fiber reinforced polymer/plastic (CFRP), the nondestructive structural health monitoring for CFRP is playing an increasingly essential role. As a nonradiative, noninvasive and nondestructive detection technique, planar electrical capacitance tomography (PECT) electrodes array is employed in this paper to reconstruct the damage image according to the calculated dielectric constant changes. The shape and duty ratio of PECT electrodes are optimized according to the relations between sensitivity distribution and the dielectric constant of different anisotropic degrees. The sensitivity matrix of optimized PECT sensor is more uniform as the result shows, because the sensitivity of insensitivity… More >

  • Open Access

    ARTICLE

    The Machine Learning Based Finite Element Analysis on Road Engineering of Built-in Carbon Fiber Heating Wire

    Yuhua Penga, Dingyue Chena, Lihao Chenb, Jiayu Yub, Mengjie Baoa

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 531-539, 2018, DOI:10.31209/2018.100000020

    Abstract For the study of the effect of deicing with carbon fiber heating wire in the bridge pavement structure, through built-in carbon fiber heating wire in the bridge pavement structure, experimental studies were carried out indoor on the effects of thermal conductivity in different embedding positions, layout spacing and the installs power of carbon fiber heating wire. With indoor laboratory test data as the basic parameters, using ABAQUS finite element software simulation, an analysis was carried out of the degree that the surface temperature of the heating wire, the thermal physical parameters of asphalt concrete, and environmental conditions have influence on… More >

  • Open Access

    ARTICLE

    Progressive Damage Analysis (PDA) of Carbon Fiber Plates with Out-of-Plane Fold under Pressure

    Tao Zhang, Jinglan Deng*, Jihui Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 545-559, 2020, DOI:10.32604/cmes.2020.09536

    Abstract The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life. Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials, and to understand the patterns of defect evolution. Therefore, the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials, and a compressive performance test is conducted to quantify the influence of out-of-plane defects. The result shows that the compressive… More >

  • Open Access

    ARTICLE

    Experimental Study on the Influence Mechanism of Carbon Fiber/Epoxy Composite Reinforcement and Matrix on Its Fire Performance

    Lei Zhang1, Haiyan Wang1,*, Junpeng Zhang1, Zhi Wang2, Zuohui Xu1, Xinyu Gao1

    Journal of Renewable Materials, Vol.8, No.3, pp. 219-237, 2020, DOI:10.32604/jrm.2020.09096

    Abstract The effects of the number of layers, the arrangement of carbon fiber (CF) tow and the epoxy resin (ER) matrix on the fire performance of carbon fiber/epoxy composites (CFEC) were studied by a variety of experimental methods. The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites. The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties. The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of… More >

  • Open Access

    ARTICLE

    Flexural Performance of CFRP-Bamboo Scrimber Composite Beams

    Xizhi Wu1,2, Xueyou Huang3, Xianjun Li1,*, Yiqiang Wu1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1295-1307, 2019, DOI:10.32604/jrm.2019.07839

    Abstract This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer (CFRP) to address the low stiffness and strength of bamboo scrimbers. Three-point bending test and finite element model were conducted to study the failure mode, strain-displacement relationship, load-displacement relationship and relationships between strain distribution, contact pressure and deflection, and adhesive debonding. The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets. The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams, and the flexural strength were… More >

  • Open Access

    ARTICLE

    An Application of Support Vector Regression for Impact Load Estimation Using Fiber Bragg Grating Sensors

    Clyde K Coelho, Cristobal Hiche, Aditi Chattopadhyay

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 65-82, 2011, DOI:10.3970/sdhm.2011.007.065

    Abstract Low velocity impacts on composite plates often create subsurface damage that is difficult to diagnose. Fiber Bragg grating (FBG) sensors can be used to detect subsurface damage in composite laminates due to low velocity impact. This paper focuses on the prediction of impact loading in composite structures as a function of time using a support vector regression approach. A time delay embedding feature extraction scheme is used since it can characterize the dynamics of the impact using the sensor signals. The novelty of this approach is that it can be applied on complex geometries and does not require a dense… More >

  • Open Access

    ARTICLE

    Progressive Failure Evaluation of Composite Skin-Stiffener Joints Using Node to Surface Interactions and CZM

    A. Sane1,*, P. M. Padole1, R. V. Uddanwadiker1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.2, pp. 281-294, 2018, DOI: 10.3970/cmes.2018.05046

    Abstract T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components. It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however, in specific applications these joints undergo pull loading. De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure. Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied. In this study, Finite Element Analysis has been performed using cohesive contact interactions on a… More >

  • Open Access

    ARTICLE

    Improvement of Natural Fiber Composite Materials by Carbon Fibers

    Meriem Fehri1,2, Rachid Robleh Ragueh1, Alexandre Vivet1*, Fakhreddine Dammak2, Mohamed Haddar2

    Journal of Renewable Materials, Vol.5, No.1, pp. 38-47, 2017, DOI:10.7569/JRM.2016.634123

    Abstract The purpose of this work is the improvement of flax fiber-reinforced composites obtained by vacuum molding in order to encourage their insertion into industrial products. The relatively high degree of porosity in these kinds of composites, due to the lack of compatibility between epoxy matrix and flax fibers and the hydrophilicity of flax fiber, remains a major constraint to their use in the industrial world. Hence, we have used a combination of carbon fibers with those of flax in order to optimize the properties of the assembly. Several stacking sequences have been tested in order to analyze the influence of… More >

  • Open Access

    ARTICLE

    Development of a Numerical Toolbox for the Computer Aided Design of Composite Over-Wrapped Pressure Vessels

    Eugenio Brusa1, Matteo Nobile2

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.2, pp. 155-190, 2009, DOI:10.3970/cmes.2009.048.155

    Abstract Lightness of high pressure vessels is currently assured by composite materials. Construction of over-wrapped composite pressure vessels with inner metallic liner is for instance compatible with standards requirements of the hydrogen technology of energy storage. Therefore a typical layout manufactured by some industries consists of a cylindrical vessel with covering of carbon-epoxy laminates and metallic impermeable liner. To allow the filament winding of the composite fibres are used hoop and helical layers, respectively. A single nozzle is usually built. It requires that the vessel material is reinforced. This need imposes to have a variable thickness in the composite layer. In… More >

Displaying 11-20 on page 2 of 24. Per Page