Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (101)
  • Open Access

    ARTICLE

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe3O4 Carbon Nanotubes

    Jiahao Liu1,#, Xinyu Zhang1,#, Huiwei Wang1, Yupeng Li1, Shan Jin1, Guanxian Qiu1, Ce Sun1,2,*, Haiyan Tan1, Yanhua Zhang1,2,*

    Journal of Renewable Materials, Vol.13, No.4, pp. 669-685, 2025, DOI:10.32604/jrm.2025.02025-0042 - 21 April 2025

    Abstract In recent years, degradable materials to replace petroleum-based materials in preparing high-performance foams have received much research attention. Degradable polymer foaming mostly uses supercritical fluids, especially carbon dioxide (Sc-CO2). The main reason is that the foams obtained by Sc-CO2 foaming have excellent performance, and the foaming agent is green and pollution-free. In current research, Poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and other degradable polymers are generally used as the main foaming materials, but the foaming performance of these degradable polyesters is poor and requires modification. In this work, 10% PLA was added to PBAT to… More > Graphic Abstract

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe<sub><b>3</b></sub>O<sub><b>4</b></sub> Carbon Nanotubes

  • Open Access

    ARTICLE

    Advanced Poly(Lactic Acid)/Thermoplastic Polyurethane Blend-Based Nanocomposites with Carbon Nanotubes and Graphene Nanoplatelets for Shape Memory

    Nayara Koba de Moura Morgado, Guilherme Ferreira de Melo Morgado, Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador*

    Journal of Polymer Materials, Vol.42, No.1, pp. 95-110, 2025, DOI:10.32604/jpm.2025.059364 - 27 March 2025

    Abstract The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications. Medical sutures, essential for securing implants and closing deep wounds, have evolved to incorporate smart materials capable of responding to various stimuli. This study explores the potential of thermoresponsive sutures, made from shape memory materials, that contract upon heating to bring loose stitches closer together, promoting optimal wound closure. We developed nanocomposites based on a blend of poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes (CNT) and graphene nanoplatelets (GN)… More >

  • Open Access

    REVIEW

    Plates, Beams and Shells Reinforced by CNTs or GPLs: A Review on Their Structural Behavior and Computational Methods

    Mohammad Javad Bayat1, Amin Kalhori2, Kamran Asemi1,*, Masoud Babaei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1351-1458, 2025, DOI:10.32604/cmes.2025.060222 - 27 January 2025

    Abstract Since the initial observation of carbon nanotubes (CNTs) and graphene platelets (GPLs) in the 1990 and 2000s, the demand for high-performance structural applications and multifunctional materials has driven significant interest in composite structures reinforced with GPLs and CNTs. Incorporating these nanofillers into matrix materials markedly enhances the mechanical properties of the structures. To further improve efficiency and functionality, functionally graded (FG) distributions of CNTs and GPLs have been proposed. This study presents an extensive review of computational approaches developed to predict the global behavior of composite structural components enhanced with CNT and GPL nanofillers. The… More >

  • Open Access

    ARTICLE

    Greener, Safer Packaging: Carbon Nanotubes/Gelatin-Enhanced Recycled Paper for Fire Retardation with DFT Calculations

    Hebat-Allah S. Tohamy*

    Journal of Renewable Materials, Vol.12, No.12, pp. 1963-1983, 2024, DOI:10.32604/jrm.2024.054977 - 20 December 2024

    Abstract Fire retardant CNTs/WPP/Gel composite papers were fabricated by incorporating bio-based carbon nanotubes (CNTs) recycled from mature beech pinewood sawdust (MB) and cellulosic waste printed paper (WPP) into a gelatin solution (Gel) and allowing the mixture to dry at room temperature. The CNTs within the WPP matrix formed a network, enhancing the mechanical and thermal properties of the resulting CNTs paper sheet. In comparison to pure WPP/Gel, CNTs/WPP/Gel exhibited superior flexibility, mechanical toughness, and notable flame retardancy characteristics. This study provides a unique and practical method for producing flame-retardant CNTs/WPP/Gel sheets, suitable for diverse industrial applications,… More > Graphic Abstract

    Greener, Safer Packaging: Carbon Nanotubes/Gelatin-Enhanced Recycled Paper for Fire Retardation with DFT Calculations

  • Open Access

    ARTICLE

    Constructing TiO2/g-C3N4/Single-Walled Carbon Nanotube Hydrogel for Synergistic Solar Evaporation and Photocatalytic Organic Pollutant

    Junxiao Qiu1,2, Sanmei Liu3,4,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 315-327, 2024, DOI:10.32604/jpm.2024.057951 - 16 December 2024

    Abstract Integration of solar-driven interfacial evaporation and photocatalysis is one of the most promising technologies for generating fresh water and removing pollutants. In this work, TiO2/g-C3N4 photocatalysis is loaded on a hydrogel containing single-walled carbon nanotube (SWCNT). Due to the excellent water evaporation channel of hydrogel and the excellent photothermal conversion performance of SWCNT, as well as the good visible light absorption ability of TiO2/g-C3N4, TiO2/g-C3N4/SWCNT hydrogel exhibits good hydrothermal evaporation and photocatalytic activity. The optimum water evaporation rate of 1.43 kg m−2 h−1. In particular, the optimized TiO2/g-C3N4/SWCNT hydrogel can also remove more than 90% methylene blue (MB) More > Graphic Abstract

    Constructing TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>/Single-Walled Carbon Nanotube Hydrogel for Synergistic Solar Evaporation and Photocatalytic Organic Pollutant

  • Open Access

    PROCEEDINGS

    Radio Frequency-Assisted Curing of On-Chip Printed Carbon Nanotube/silicone Heatsinks Produced by Material Extrusion 3D Printing

    Thang Q. Tran1,2, Anubhav Sarmah1, Ethan M. Harkin1, Smita Shivraj Dasari1, Kailash Arole1, Matthew Cupich1, Aniela J. K. Wright1, Hang Li Seet2, Sharon Mui Ling Nai2, Micah J. Green1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012057

    Abstract With the rapid development of high-power integrated electronic devices, many polymer-based thermal management devices have been developed to address the problem of overheating and to improve the reliability and lifetime of electronic devices. Here we demonstrate the material extrusion 3D printing of carbon nanotube (CNT)/silicone heatsinks directly onto electronic devices. CNTs were used as a conductive nanofiller and a rheological modifier to improve thermal and electrical conductivities and the printability of the silicone inks, respectively. Additionally, CNTs are also a radio frequency (RF) susceptor, so the integration of CNTs into the silicone matrix allowed for… More >

  • Open Access

    ARTICLE

    Entropies of the Y-Junction Type Nanostructures

    Ricai Luo1, Aisha Javed2, Muhammad Azeem3,*, Muhammad Kamran Jamil3, Hassan Raza4, Muhammad Yasir Ilyas5

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2665-2679, 2023, DOI:10.32604/cmes.2023.023044 - 23 November 2022

    Abstract Recent research on nanostructures has demonstrated their importance and application in a variety of fields. Nanostructures are used directly or indirectly in drug delivery systems, medicine and pharmaceuticals, biological sensors, photodetectors, transistors, optical and electronic devices, and so on. The discovery of carbon nanotubes with Y-shaped junctions is motivated by the development of future advanced electronic devices. Because of their interaction with Y-junctions, electronic switches, amplifiers, and three-terminal transistors are of particular interest. Entropy is a concept that determines the uncertainty of a system or network. Entropy concepts are also used in biology, chemistry, and More >

  • Open Access

    ARTICLE

    Impact of Radiation and Slip on Newtonian Liquid Flow Past a Porous Stretching/Shrinking Sheet in the Presence of Carbon Nanotubes

    U. S. Mahabaleshwar1, T. Anusha1,*, M. EL Ganaoui2, R. Bennacer3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 929-939, 2023, DOI:10.32604/fdmp.2022.021996 - 02 November 2022

    Abstract The impacts of radiation, mass transpiration, and volume fraction of carbon nanotubes on the flow of a Newtonian fluid past a porous stretching/shrinking sheet are investigated. For this purpose, three types of base liquids are considered, namely, water, ethylene glycol and engine oil. Moreover, single and multi-wall carbon nanotubes are examined in the analysis. The overall physical problem is modeled using a system of highly nonlinear partial differential equations, which are then converted into highly nonlinear third order ordinary differential equations via a suitable similarity transformation. These equations are solved analytically along with the corresponding More > Graphic Abstract

    Impact of Radiation and Slip on Newtonian Liquid Flow Past a Porous Stretching/Shrinking Sheet in the Presence of Carbon Nanotubes

  • Open Access

    ARTICLE

    ENTROPY GENERATION OF THREE DIMENSIONAL BINGHAM NANOFLUID FLOW WITH CARBON NANOTUBES PASSING THROUGH PARALLEL PLATES

    P.S.S. Nagalakshmi, N. Vijaya*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-18, 2022, DOI:10.5098/hmt.19.17

    Abstract The main emphasis of this study is to examine the entropy generation of the spatial-temporal state of Bingham visco-plastic nanofluid flow between parallel plates are solved numerically using adequate similarity solutions. Python with BVP solver is used to interpret the results of the adopted model. Heat and mass transfer rate with respect to yield stress was investigated. The results report that the entopy generation of nanofluids exploring single and multiwalled carbon nanotubes dims with the increasing local thermal Peclet number nearer the lower and upper plates. Researchers have established that entropy generation can be reduced More >

  • Open Access

    ARTICLE

    Design of Multi-Valued Logic Circuit Using Carbon Nano Tube Field Transistors

    S. V. Ratankumar1,2, L. Koteswara Rao1,*, M. Kiran Kumar3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5283-5298, 2022, DOI:10.32604/cmc.2022.027975 - 28 July 2022

    Abstract The design of a three-input logic circuit using carbon nanotube field effect transistors (CNTFETs) is presented. Ternary logic must be an exact replacement for dual logic since it performs straightforwardly in digital devices, which is why this design is so popular, and it also reduces chip area, both of which are examples of circuit overheads. The proposed module we have investigated is a triple-logic-based one, based on advanced technology CNTFETs and an emphasis on minimizing delay times at various values, as well as comparisons of the design working with various load capacitances. Comparing the proposed… More >

Displaying 1-10 on page 1 of 101. Per Page