Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (107)
  • Open Access

    ARTICLE

    Surface Wettability and Boiling Heat Transfer Enhancement in Microchannels Using Graphene Nanoplatelet and Multi-Walled Carbon Nanotube Coatings

    Ghinwa Al Mimar1, Natrah Kamaruzaman1,*, Kamil Talib Alkhateeb2

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1933-1956, 2025, DOI:10.32604/fhmt.2025.070118 - 31 December 2025

    Abstract The pivotal role microchannels play in the thermal management of electronic components has, in recent decades, prompted extensive research into methods for enhancing their heat transfer performance. Among these methods, surface wettability modification was found to be highly effective owing to its significant influence on boiling dynamics and heat transfer mechanisms. In this study, we modified surface wettability using a nanocomposite coating composed of graphene nano plate (GNPs) and multi-walled carbon nanotubes (MWCNT) and then examined how the modification affected the transfer of boiling heat in microchannels. The resultant heat transfer coefficients for hydrophilic and… More >

  • Open Access

    ARTICLE

    Preparation of ZnS-Carbon nanotube nanocomposites via solvothermal method and their application in electrochemical detection of escherichia coli O157:H7

    F. F. Tonga,*, J. L. Hanb

    Chalcogenide Letters, Vol.22, No.8, pp. 719-733, 2025, DOI:10.15251/CL.2025.228.719

    Abstract In this study, hierarchical ZnS–CNT hybrids were synthesized via a solvothermal reaction at 180 °C for 48 h, producing ∼200 nm ZnS spheres uniformly anchored onto oxidized multiwalled carbon nanotubes. Structural analyses by XRD confirmed the cubic sphalerite phase, while SEM and TEM revealed a “pearl-necklace” morphology and effective nanoparticle dispersion. XPS spectra verified Zn2+ and oxygen-containing surface groups on the composite. Nitrogen adsorption–desorption measurements showed that incorporating CNTs transformed the material’s isotherm from type III to type IV, increasing the BET surface area from 68 to 155 m2 /g and introducing mesoporosity. When drop-cast onto More >

  • Open Access

    ARTICLE

    A New Quadrilateral Finite Element Formulation for the Free Vibration Analysis of CNT-Reinforced Plates with Cutouts

    Boudjema Bendaho1, Abdelhak Mesbah1, Zakaria Belabed1,2,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2781-2805, 2025, DOI:10.32604/cmc.2025.069709 - 23 September 2025

    Abstract A new quadrilateral finite element IQ4 is developed for the free vibration of carbon nanotube-reinforced composite (CNTRC) perforated plates with a central cutout. By enriching the membrane part and incorporating a projected shear technique, the IQ4 element is proposed to address the known limitations of the standard Q4 element, such as shear locking and limited consistency in the coupling of membrane-bending components. The proposed element is formulated within the FSDT-based framework and assessed through benchmark tests to verify its convergence and accuracy. The governing equations are obtained via the weak form of Hamilton’s principle. Particular… More >

  • Open Access

    REVIEW

    Research Progress and Applications of Carbon Nanotubes, Black Phosphorus, and Graphene-Based Nanomaterials: Insights from Computational Simulations

    Qinghua Qin*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1-39, 2025, DOI:10.32604/cmc.2025.067293 - 29 August 2025

    Abstract Carbon nanotubes (CNTs), black phosphorus nanotubes (BPNTs), and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems (NEMS), energy storage, and sensing technologies due to their exceptional mechanical, electrical, and thermal properties. This review summarizes recent advances in understanding the dynamic behaviors of these nanomaterials, with a particular focus on insights gained from molecular dynamics (MD) simulations. Key areas discussed include the oscillatory and rotational dynamics of double-walled CNTs, fabrication and stability challenges associated with BPNTs, and the emerging potential of graphyne nanotubes (GNTs). The review also outlines design strategies for enhancing nanodevice performance More >

  • Open Access

    ARTICLE

    Sensitive Analysis on the Compressive and Flexural Strength of Carbon Nanotube-Reinforced Cement Composites Using Machine Learning

    Ahed Habib1,*, Mohamed Maalej2, Samir Dirar3, M. Talha Junaid2, Salah Altoubat2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 789-817, 2025, DOI:10.32604/sdhm.2025.064882 - 30 June 2025

    Abstract Carbon nanotube-reinforced cement composites have gained significant attention due to their enhanced mechanical properties, particularly in compressive and flexural strength. Despite extensive research, the influence of various parameters on these properties remains inadequately understood, primarily due to the complex interactions within the composites. This study addresses this gap by employing machine learning techniques to conduct a sensitivity analysis on the compressive and flexural strength of carbon nanotube-reinforced cement composites. It systematically evaluates nine data-preprocessing techniques and benchmarks eleven machine-learning algorithms to reveal trade-offs between predictive accuracy and computational complexity, which has not previously been explored… More >

  • Open Access

    ARTICLE

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe3O4 Carbon Nanotubes

    Jiahao Liu1,#, Xinyu Zhang1,#, Huiwei Wang1, Yupeng Li1, Shan Jin1, Guanxian Qiu1, Ce Sun1,2,*, Haiyan Tan1, Yanhua Zhang1,2,*

    Journal of Renewable Materials, Vol.13, No.4, pp. 669-685, 2025, DOI:10.32604/jrm.2025.02025-0042 - 21 April 2025

    Abstract In recent years, degradable materials to replace petroleum-based materials in preparing high-performance foams have received much research attention. Degradable polymer foaming mostly uses supercritical fluids, especially carbon dioxide (Sc-CO2). The main reason is that the foams obtained by Sc-CO2 foaming have excellent performance, and the foaming agent is green and pollution-free. In current research, Poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and other degradable polymers are generally used as the main foaming materials, but the foaming performance of these degradable polyesters is poor and requires modification. In this work, 10% PLA was added to PBAT to… More > Graphic Abstract

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe<sub><b>3</b></sub>O<sub><b>4</b></sub> Carbon Nanotubes

  • Open Access

    ARTICLE

    Advanced Poly(Lactic Acid)/Thermoplastic Polyurethane Blend-Based Nanocomposites with Carbon Nanotubes and Graphene Nanoplatelets for Shape Memory

    Nayara Koba de Moura Morgado, Guilherme Ferreira de Melo Morgado, Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador*

    Journal of Polymer Materials, Vol.42, No.1, pp. 95-110, 2025, DOI:10.32604/jpm.2025.059364 - 27 March 2025

    Abstract The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications. Medical sutures, essential for securing implants and closing deep wounds, have evolved to incorporate smart materials capable of responding to various stimuli. This study explores the potential of thermoresponsive sutures, made from shape memory materials, that contract upon heating to bring loose stitches closer together, promoting optimal wound closure. We developed nanocomposites based on a blend of poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes (CNT) and graphene nanoplatelets (GN)… More >

  • Open Access

    REVIEW

    Plates, Beams and Shells Reinforced by CNTs or GPLs: A Review on Their Structural Behavior and Computational Methods

    Mohammad Javad Bayat1, Amin Kalhori2, Kamran Asemi1,*, Masoud Babaei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1351-1458, 2025, DOI:10.32604/cmes.2025.060222 - 27 January 2025

    Abstract Since the initial observation of carbon nanotubes (CNTs) and graphene platelets (GPLs) in the 1990 and 2000s, the demand for high-performance structural applications and multifunctional materials has driven significant interest in composite structures reinforced with GPLs and CNTs. Incorporating these nanofillers into matrix materials markedly enhances the mechanical properties of the structures. To further improve efficiency and functionality, functionally graded (FG) distributions of CNTs and GPLs have been proposed. This study presents an extensive review of computational approaches developed to predict the global behavior of composite structural components enhanced with CNT and GPL nanofillers. The… More >

  • Open Access

    ARTICLE

    Hydrothermally synthesized highly stable binary manganese magnesium sulfide (MnMgS) composite with carbon nanotubes for high-performance supercapattery applications

    M. A. Sadia,*, A. Mahmoodb, W. Al-Masryb, C. W. Dunnillc, N. Mahmoodd

    Chalcogenide Letters, Vol.21, No.12, pp. 965-976, 2024, DOI:10.15251/CL.2024.2112.965

    Abstract The device which combines the outcomes supercapacitor (SC) and battery is known as supercapattery. Due to their high conductivity, sensitivity, and storage capacity, carbon nanotubes have drawn attention in energy storage (EES) applications. To achieve highperformance supercapattery, this study used an electrode based on carbon nanotubes (CNTs) and manganese magnesium sulfide (MnMgS). It showed 963 C/g specific capacity which is significantly greater than the reference sample's value of 1 A/g. The supercapattery is engineered using the CNT-doped MnMgS electrode (MnMgS/CNT//AC), which has a specific capacity (Cs) of 268 Cg-1 at 1 Ag-1 current density. A significantly higher More >

  • Open Access

    ARTICLE

    Greener, Safer Packaging: Carbon Nanotubes/Gelatin-Enhanced Recycled Paper for Fire Retardation with DFT Calculations

    Hebat-Allah S. Tohamy*

    Journal of Renewable Materials, Vol.12, No.12, pp. 1963-1983, 2024, DOI:10.32604/jrm.2024.054977 - 20 December 2024

    Abstract Fire retardant CNTs/WPP/Gel composite papers were fabricated by incorporating bio-based carbon nanotubes (CNTs) recycled from mature beech pinewood sawdust (MB) and cellulosic waste printed paper (WPP) into a gelatin solution (Gel) and allowing the mixture to dry at room temperature. The CNTs within the WPP matrix formed a network, enhancing the mechanical and thermal properties of the resulting CNTs paper sheet. In comparison to pure WPP/Gel, CNTs/WPP/Gel exhibited superior flexibility, mechanical toughness, and notable flame retardancy characteristics. This study provides a unique and practical method for producing flame-retardant CNTs/WPP/Gel sheets, suitable for diverse industrial applications,… More > Graphic Abstract

    Greener, Safer Packaging: Carbon Nanotubes/Gelatin-Enhanced Recycled Paper for Fire Retardation with DFT Calculations

Displaying 1-10 on page 1 of 107. Per Page