Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (313)
  • Open Access


    Deep Learning Approach for Hand Gesture Recognition: Applications in Deaf Communication and Healthcare

    Khursheed Aurangzeb1, Khalid Javeed2, Musaed Alhussein1, Imad Rida3, Syed Irtaza Haider1, Anubha Parashar4,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 127-144, 2024, DOI:10.32604/cmc.2023.042886

    Abstract Hand gestures have been used as a significant mode of communication since the advent of human civilization. By facilitating human-computer interaction (HCI), hand gesture recognition (HGRoc) technology is crucial for seamless and error-free HCI. HGRoc technology is pivotal in healthcare and communication for the deaf community. Despite significant advancements in computer vision-based gesture recognition for language understanding, two considerable challenges persist in this field: (a) limited and common gestures are considered, (b) processing multiple channels of information across a network takes huge computational time during discriminative feature extraction. Therefore, a novel hand vision-based convolutional neural network (CNN) model named (HVCNNM)… More >

  • Open Access


    Smart Healthcare Activity Recognition Using Statistical Regression and Intelligent Learning

    K. Akilandeswari1, Nithya Rekha Sivakumar2,*, Hend Khalid Alkahtani3, Shakila Basheer3, Sara Abdelwahab Ghorashi2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1189-1205, 2024, DOI:10.32604/cmc.2023.034815

    Abstract In this present time, Human Activity Recognition (HAR) has been of considerable aid in the case of health monitoring and recovery. The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance. Although many research works conducted on Smart Healthcare Monitoring, there remain a certain number of pitfalls such as time, overhead, and falsification involved during analysis. Therefore, this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning (SPR-SVIAL) for Smart Healthcare Monitoring. At first, the Statistical Partial Regression Feature Extraction model is used… More >

  • Open Access


    IoT Task Offloading in Edge Computing Using Non-Cooperative Game Theory for Healthcare Systems

    Dinesh Mavaluru1,*, Chettupally Anil Carie2, Ahmed I. Alutaibi3, Satish Anamalamudi2, Bayapa Reddy Narapureddy4, Murali Krishna Enduri2, Md Ezaz Ahmed1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1487-1503, 2024, DOI:10.32604/cmes.2023.045277

    Abstract In this paper, we present a comprehensive system model for Industrial Internet of Things (IIoT) networks empowered by Non-Orthogonal Multiple Access (NOMA) and Mobile Edge Computing (MEC) technologies. The network comprises essential components such as base stations, edge servers, and numerous IIoT devices characterized by limited energy and computing capacities. The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption. The system operates in discrete time slots and employs a quasi-static approach, with a specific focus on the complexities of task partitioning and the management… More >

  • Open Access


    Correction: Learning-Based Metaheuristic Approach for Home Healthcare Optimization Problem

    Mariem Belhor1,2,3, Adnen El-Amraoui1,*, Abderrazak Jemai2, François Delmotte1

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 271-271, 2024, DOI:10.32604/csse.2023.048573

    Abstract This article has no abstract. More >

  • Open Access


    Risk Factors for Abuse in Children with Congenital Heart Disease Presenting at a Pediatric Tertiary Care Hospital

    Kristi K. Westphaln1,2,*, Karen Kay Imagawa2,3, Lorena Espinosa Smith1,4, Julia Srivastava5, Nancy A. Pike1,5

    Congenital Heart Disease, Vol.18, No.6, pp. 657-670, 2023, DOI:10.32604/chd.2023.044179

    Abstract Background: Congenital heart disease (CHD) is a chronic medical condition often diagnosed at birth and requires surgical intervention, multiple hospitalizations, and lifelong care. This can put significant stress on the family, leading to altered maternal mental health, bonding and attachment issues, and the potential for child abuse. The purpose of this study is to explore the characteristics of a sample of young children with CHD who experienced hospitalization with concurrent concern for child abuse in a free-standing pediatric tertiary care hospital. Methods: Electronic medical records were reviewed for children aged 0–5 years old who were hospitalized with concern for child… More >

  • Open Access


    Implementation of a High-Risk Outpatient Clinic for Children with Complex Congenital Heart Disease in a Reference Service in Brazil

    Gustavo Foronda1,2, Vanessa Ferreira Amorim de Melo2,3,*, Claudia Regina Pinheiro de Castro Grau4, Ingrid Magatti Piva1, Glaucia Maria Penha Tavares4, Ana Cristina Sayuri Tanaka1, Nana Miura1

    Congenital Heart Disease, Vol.18, No.6, pp. 649-656, 2023, DOI:10.32604/chd.2023.027987

    Abstract Background: Children with congenital heart disease (CHD), even after surgical approaches, and especially those who undergo staged procedures in the first months of life, remain vulnerable to readmissions and complications, requiring very close monitoring and differentiated intervention strategies. Methods: Descriptive and exploratory study, of the experience report type, which presents the process of building the high-risk outpatient clinic for complex congenital heart diseases (AAR) at the Instituto do Coração (InCor). Results: Report of the path taken to structure the AAR, demonstrating the organization, interface with the multidisciplinary team, admission and discharge criteria, training, and patient profile. In these five years… More >

  • Open Access


    Evaluation of the Burnout of Caregivers of Institut de Cancérologie d’Akanda

    Evaluation du burnout du personnel soignant de l’Institut de Cancérologie d’Akanda

    A. C. Filankembo Kava*, B. C. Ndjengue Bengono, P. L. Nzamba Bissielou, C. Nziengui Tirogo, A. Kabena, T. Mpami, E. Belembaogo

    Psycho-Oncologie, Vol.17, No.4, pp. 267-273, 2023, DOI:10.32604/po.2023.044512

    Abstract Aim: Oncologists are particularly prone to developing burnout syndrome due to the demanding task of caring for cancer patients. Undiagnosed and incorrectly managed, burnout can have a negative impact on professional performance. The objective of the study is to measure the frequency of burnout among nursing staff at the Institut de Cancérologie d’Akanda (ICA) and to assess the main risk factors. Procedure: We conducted a cross-sectional study at the ICA during the month of January 2022. Burnout was assessed using the Maslach Burnout Inventory (MBI). Results: Between the 42 participants, there was a female predominance (57.1%) with a male to… More >

  • Open Access


    Enhancing Healthcare Data Security and Disease Detection Using Crossover-Based Multilayer Perceptron in Smart Healthcare Systems

    Mustufa Haider Abidi*, Hisham Alkhalefah, Mohamed K. Aboudaif

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 977-997, 2024, DOI:10.32604/cmes.2023.044169

    Abstract The healthcare data requires accurate disease detection analysis, real-time monitoring, and advancements to ensure proper treatment for patients. Consequently, Machine Learning methods are widely utilized in Smart Healthcare Systems (SHS) to extract valuable features from heterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities. These methods are employed across different domains that are susceptible to adversarial attacks, necessitating careful consideration. Hence, this paper proposes a crossover-based Multilayer Perceptron (CMLP) model. The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on the medical records of patients. Once an… More >

  • Open Access


    Evolutionary Neural Architecture Search and Its Applications in Healthcare

    Xin Liu1, Jie Li1,*, Jianwei Zhao2, Bin Cao2,*, Rongge Yan3, Zhihan Lyu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 143-185, 2024, DOI:10.32604/cmes.2023.030391

    Abstract Most of the neural network architectures are based on human experience, which requires a long and tedious trial-and-error process. Neural architecture search (NAS) attempts to detect effective architectures without human intervention. Evolutionary algorithms (EAs) for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures. Using multiobjective EAs for NAS, optimal neural architectures that meet various performance criteria can be explored and discovered efficiently. Furthermore, hardware-accelerated NAS methods can improve the efficiency of the NAS. While existing reviews have mainly focused on different strategies to complete NAS, a few studies have explored the… More > Graphic Abstract

    Evolutionary Neural Architecture Search and Its Applications in Healthcare

  • Open Access


    Integration of Digital Twins and Artificial Intelligence for Classifying Cardiac Ischemia

    Mohamed Ammar1,*, Hamed Al-Raweshidy2,*

    Journal on Artificial Intelligence, Vol.5, pp. 195-218, 2023, DOI:10.32604/jai.2023.045199

    Abstract Despite advances in intelligent medical care, difficulties remain. Due to its complicated governance, designing, planning, improving, and managing the cardiac system remains difficult. Oversight, including intelligent monitoring, feedback systems, and management practises, is unsuccessful. Current platforms cannot deliver lifelong personal health management services. Insufficient accuracy in patient crisis warning programmes. No frequent, direct interaction between healthcare workers and patients is visible. Physical medical systems and intelligent information systems are not integrated. This study introduces the Advanced Cardiac Twin (ACT) model integrated with Artificial Neural Network (ANN) to handle real-time monitoring, decision-making, and crisis prediction. THINGSPEAK is used to create an… More >

Displaying 1-10 on page 1 of 313. Per Page