Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (317)
  • Open Access

    REVIEW

    A Comprehensive Survey on Federated Learning in the Healthcare Area: Concept and Applications

    Deepak Upreti1, Eunmok Yang2, Hyunil Kim3,*, Changho Seo1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2239-2274, 2024, DOI:10.32604/cmes.2024.048932 - 08 July 2024

    Abstract Federated learning is an innovative machine learning technique that deals with centralized data storage issues while maintaining privacy and security. It involves constructing machine learning models using datasets spread across several data centers, including medical facilities, clinical research facilities, Internet of Things devices, and even mobile devices. The main goal of federated learning is to improve robust models that benefit from the collective knowledge of these disparate datasets without centralizing sensitive information, reducing the risk of data loss, privacy breaches, or data exposure. The application of federated learning in the healthcare industry holds significant promise More >

  • Open Access

    ARTICLE

    Vector Dominance with Threshold Searchable Encryption (VDTSE) for the Internet of Things

    Jingjing Nie1,*, Zhenhua Chen2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4763-4779, 2024, DOI:10.32604/cmc.2024.051181 - 20 June 2024

    Abstract The Internet of Medical Things (IoMT) is an application of the Internet of Things (IoT) in the medical field. It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems, which is essential in smart healthcare. However, Personal Health Records (PHRs) are normally kept in public cloud servers controlled by IoMT service providers, so privacy and security incidents may be frequent. Fortunately, Searchable Encryption (SE), which can be used to execute queries on encrypted data, can address the issue above. Nevertheless, most existing SE schemes cannot solve the vector dominance threshold… More >

  • Open Access

    ARTICLE

    Fortifying Healthcare Data Security in the Cloud: A Comprehensive Examination of the EPM-KEA Encryption Protocol

    Umi Salma Basha1, Shashi Kant Gupta2, Wedad Alawad3, SeongKi Kim4,*, Salil Bharany5,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3397-3416, 2024, DOI:10.32604/cmc.2024.046265 - 15 May 2024

    Abstract A new era of data access and management has begun with the use of cloud computing in the healthcare industry. Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a major concern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentiality and integrity of healthcare data in the cloud. The computational overhead of encryption technologies could lead to delays in data access and processing rates. To address these challenges, we introduced the Enhanced Parallel Multi-Key Encryption Algorithm (EPM-KEA), aiming to bolster… More >

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621 - 26 March 2024

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

  • Open Access

    ARTICLE

    Adaptation of Federated Explainable Artificial Intelligence for Efficient and Secure E-Healthcare Systems

    Rabia Abid1, Muhammad Rizwan2, Abdulatif Alabdulatif3,*, Abdullah Alnajim4, Meznah Alamro5, Mourade Azrour6

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3413-3429, 2024, DOI:10.32604/cmc.2024.046880 - 26 March 2024

    Abstract Explainable Artificial Intelligence (XAI) has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning (ML) and Deep Learning (DL) based algorithms. In this paper, we chose e-healthcare systems for efficient decision-making and data classification, especially in data security, data handling, diagnostics, laboratories, and decision-making. Federated Machine Learning (FML) is a new and advanced technology that helps to maintain privacy for Personal Health Records (PHR) and handle a large amount of medical data effectively. In this context, XAI, along with FML, increases efficiency and improves the More >

  • Open Access

    ARTICLE

    Loss to Specialized Cardiology Follow-Up in Adults Living with Congenital Heart Disease

    Cheryl Dickson1,2,4, Danielle Osborn1, David Baker1,4, Judith Fethney3, David S. Celermajer1,4, Rachael Cordina1,4,*

    Congenital Heart Disease, Vol.19, No.1, pp. 49-63, 2024, DOI:10.32604/chd.2023.044874 - 20 March 2024

    Abstract Background: Much has been written about the loss to follow-up in the transition between pediatric and adult Congenital Heart Disease (CHD) care centers. Much less is understood about the loss to follow-up (LTF) after a successful transition. This is critical too, as patients lost to specialised care are more likely to experience morbidity and premature mortality. Aims: To understand the prevalence and reasons for loss to follow-up (LTF) at a large Australian Adult Congenital Heart Disease (ACHD) centre. Methods: Patients with moderate or highly complex CHD and gaps in care of >3 years (defined as LTF)… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868 - 11 March 2024

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Hand Gesture Recognition: Applications in Deaf Communication and Healthcare

    Khursheed Aurangzeb1, Khalid Javeed2, Musaed Alhussein1, Imad Rida3, Syed Irtaza Haider1, Anubha Parashar4,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 127-144, 2024, DOI:10.32604/cmc.2023.042886 - 30 January 2024

    Abstract Hand gestures have been used as a significant mode of communication since the advent of human civilization. By facilitating human-computer interaction (HCI), hand gesture recognition (HGRoc) technology is crucial for seamless and error-free HCI. HGRoc technology is pivotal in healthcare and communication for the deaf community. Despite significant advancements in computer vision-based gesture recognition for language understanding, two considerable challenges persist in this field: (a) limited and common gestures are considered, (b) processing multiple channels of information across a network takes huge computational time during discriminative feature extraction. Therefore, a novel hand vision-based convolutional neural network… More >

  • Open Access

    ARTICLE

    Smart Healthcare Activity Recognition Using Statistical Regression and Intelligent Learning

    K. Akilandeswari1, Nithya Rekha Sivakumar2,*, Hend Khalid Alkahtani3, Shakila Basheer3, Sara Abdelwahab Ghorashi2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1189-1205, 2024, DOI:10.32604/cmc.2023.034815 - 30 January 2024

    Abstract In this present time, Human Activity Recognition (HAR) has been of considerable aid in the case of health monitoring and recovery. The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance. Although many research works conducted on Smart Healthcare Monitoring, there remain a certain number of pitfalls such as time, overhead, and falsification involved during analysis. Therefore, this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning (SPR-SVIAL) for Smart Healthcare Monitoring. At first, the Statistical Partial Regression… More >

  • Open Access

    ARTICLE

    IoT Task Offloading in Edge Computing Using Non-Cooperative Game Theory for Healthcare Systems

    Dinesh Mavaluru1,*, Chettupally Anil Carie2, Ahmed I. Alutaibi3, Satish Anamalamudi2, Bayapa Reddy Narapureddy4, Murali Krishna Enduri2, Md Ezaz Ahmed1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1487-1503, 2024, DOI:10.32604/cmes.2023.045277 - 29 January 2024

    Abstract In this paper, we present a comprehensive system model for Industrial Internet of Things (IIoT) networks empowered by Non-Orthogonal Multiple Access (NOMA) and Mobile Edge Computing (MEC) technologies. The network comprises essential components such as base stations, edge servers, and numerous IIoT devices characterized by limited energy and computing capacities. The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption. The system operates in discrete time slots and employs a quasi-static approach, with a specific focus on the complexities of… More >

Displaying 21-30 on page 3 of 317. Per Page