Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Fabrication of Microspherical Catalyst with Hierarchical Porous Structure from Functional Monomers via Low-Temperature Phase-Separation Photopolymerization

    KEMIN WANG, LIFEI HE

    Journal of Polymer Materials, Vol.36, No.3, pp. 253-260, 2019, DOI:10.32381/JPM.2019.36.03.5

    Abstract This study proposes a simple approach for the fabrication of microspherical catalysts with a hierarchical porous structure. The cross-linked porous microspheres with catalytic ability were prepared directly from small-molecular monomers via low-temperature phase-separation photopolymerization of water/oil suspension. The morphology, pore size, chemical structure, and thermal stability of the obtained porous microspheres were characterized by SEM, Mercury Intrusion Porosimetry, FTIR, and TGA. The porous microspheres directly served as an acid catalyst for the condensation reaction of benzaldehyde and ethylene glycol, which exhibited superior catalytic activity and recyclability. The results indicated that such porous microspheres have great potential in the application of… More >

  • Open Access

    ARTICLE

    Covalent Immobilization of Lipase on Novel Nanofibrous Membrane for Catalysis of the Organic Synthesis

    YINCHUN FANGa, XINHUA LIUa,b,*, XU YANGa, CUIE WANGa,*

    Journal of Polymer Materials, Vol.36, No.2, pp. 111-119, 2019, DOI:10.32381/JPM.2019.36.02.1

    Abstract Enzymes are green biocatalysts which have been widely used in many fields. Immobilization enzymes on nanofibrous membrane possessed easy recycling and high stability which would broaden their applications. Covalent immobilization of lipase could endow them higher stability than other protocols. In this study, a novel nanofibrous membrane containing epoxy groups and hydrophilic polyethylene oxide branch was used as a support for lipase immobilization. The immobilized lipase was used as the biocatalyst to catalyse Rap. stroermer reaction. The results showed that it obtained the high product yield of 88% when the volume ratio of methanol and water was 4:1, the dosage… More >

  • Open Access

    ARTICLE

    Schiff’s base of Fe3O4 @chitosan with 4,4'- diselenobisbenzaldehyde: Preparation, characterization and its catalytic activity for oxidation of sulphides

    RAFAT SABA*, MOHD. KASHIF AZIZ, GHULAM MUSTAFA, ARPIT SRIVASTAVA, SHEKHAR SRIVASTAVA*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 153-166, 2021, DOI:10.32381/JPM.2021.38.1-2.12

    Abstract We have synthesized Schiff’s base of Fe3 O4 @chitosan with 4,4'-diselenobisbenzaldehyde (Fe3O4 @CSSe) composite and used it as acatalyst for the oxidation of sulfides, having some advantageous properties such as eco-friendly, cost-effective and highly efficient magnetic biocatalyst of selenium. The synthesized schiff’s base was characterized by different physical characterization techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Vibrating sample magnetometer (VSM)and Dynamic light scattering (DLS). Further, we used the resulting schiff’s base as a catalyst in the presence of a green oxidant (H2 O2 ) to oxidize sulfides to corresponding sulfoxides at room temperature. It has been… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of poly (N-glycidyl-2- oxazolidone) Using a Green and Efficient Catalyst

    SORAYA SEGHIER1,2,*, MOHAMMED BELBACHIR1

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 205-218, 2021, DOI:10.32381/JPM.2021.38.3-4.3

    Abstract In the present paper, we report the synthesis of a new amino polymer made of oxazolidinone using an efficient ecocatalyst called Maghnite-H+. The synthesis process contains two steps: the first consists to the preparation of an amino oxiran 3-(oxiran-ylmethyl) oxazolidin- 2-one (OMO) by a substitution reaction of epichlorhydrin by 2-oxazolidinone, the second step concerns a green polymerization of the resultant oxiran by a ring opening reaction catalysed by Maghnite-H+. The polymer have been successfully prepared and characterized by various techniques, such as 1H NMR, 13C NMR, IR, which were used to elucidate the structural characteristics of the resulting polymers. The… More >

  • Open Access

    ARTICLE

    ON MODELING OF HEAT AND MASS TRANSFER AND OTHER TRANSPORT PHENOMENA IN FUEL CELLS

    Bengt Sundén*, Jinliang Yuan

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-20, 2010, DOI:10.5098/hmt.v1.1.3008

    Abstract Depending on specific configuration and design, a variety of physical phenomena is present in fuel cells, e.g., multi-component gas flow, energy and mass transfer of chemical species in composite domains and sites. These physical phenomena are strongly affected by chemical/electrochemical reactions in nano-/micro-scale structured electrodes and electrolytes. Due to the electrochemical reactions, generation and consumption of chemical species together with electric current production take place at the active surfaces for all kinds of fuel cells. Furthermore, water management and twophase flow in proton exchange membrane fuel cells (PEMFCs) and internal reforming reactions of hydrocarbon fuels in solid oxide fuel cells… More >

  • Open Access

    ARTICLE

    STUDY ON THE LIFETIME OF CATALYST IN CATALYTIC COMBUSTION FURNACE OF NATURAL GAS AND APPLICATIONS OF HEATING POTTERY

    Shihong Zhang* , Hui Yang

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-5, 2019, DOI:10.5098/hmt.12.6

    Abstract This article discussed the lifetime of catalyst on cost effect for catalytic combustion furnace and applications of pottery heated by catalytic combustion furnace in purification water. The time of start-up process rises with the increase of the number of ignition. The catalyst sintering was remarkable. By reducing the number of ignition and adjusting the temperature rise uniformly in the furnace, the efficient utilization of thermal energy could be realized to saving production cost and extending the lifetime of catalyst. With exquisite and even-textured surface the pottery had striking purification effect on water. The water purification material of this pottery was… More >

  • Open Access

    ARTICLE

    Role of Calcination Temperature on Isosorbide Production from Sorbitol Dehydration over the Catalyst Derived from Ce(IV) Sulfate

    Medta Boupan1,2, Kanyapak Prompang1, Achiraya Chompunuch1, Piwat Boonma1, Arthit Neramittagapong1,2,3,4, Somnuk Theerakulpisut5, Sutasinee Neramittagapong1,2,3,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 2985-3000, 2023, DOI:10.32604/jrm.2023.026397

    Abstract Isosorbide is a multi-purpose chemical that can be produced from renewable resources. Specifically, it has been investigated as a replacement for toxic bisphenol A (BPA) in the production of polycarbonate (PC). In this study, the synthesis of isosorbide by sorbitol dehydration using a cerium-based catalyst derived from calcined cerium (IV) sulfate (300°C, 400°C, 450°C, 500°C, and 650°C) was investigated. The reaction occurred in a high-pressure reactor containing nitrogen gas. Advanced instrumental techniques were applied to analyze the characteristics of the calcined catalyst. The results showed that the calcined catalysts demonstrated different crystalline structures and sulfate species at different temperatures. However,… More > Graphic Abstract

    Role of Calcination Temperature on Isosorbide Production from Sorbitol Dehydration over the Catalyst Derived from Ce(IV) Sulfate

  • Open Access

    ARTICLE

    EFFECTS OF PHYSICOCHEMICAL PARAMETERS ON THE OPTIMIZED TOPOLOGY OF CATALYST IN MICRO REACTORS

    Xun Liu, Li Chen* , Wen-Quan Tao

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-9, 2020, DOI:10.5098/hmt.14.16

    Abstract Fluid flow, mass transport and catalytic reaction in micro-reactors with catalyst are studied. Optimized structures of the catalyst generating the maximum reaction rate are explored by numerically solving the reactive transport processes combined with topology optimization schemes in COMSOL 5.3a. Effects of several physicochemical parameters including pressure drop, reaction rate constant, permeability of the porous catalyst and radius of the reactor are investigated. Distributions of the optimized structures, velocity, pressure and concentration are discussed in detail. Results show that the four physicochemical parameters have significant effects on the optimized structures of the catalyst obtained, indicating that generally there does not… More >

  • Open Access

    ARTICLE

    A Model for Predicting the Erosion Rate Induced by the Use of a Selective Catalytic Reduction Denitrification Technology in Cement Kilns Flue Gas

    Yihua Gao1, Fuping Qian2,*, Yi Sun2, Yue Wu2, Shenghua Wu2, Jinli Lu1, Yunlong Han1, Naijin Huang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 1997-2011, 2023, DOI:10.32604/fdmp.2023.026373

    Abstract Selective catalytic reduction (SCR) is a technology by which nitrogen oxides are converted with the aid of a catalyst into diatomic nitrogen and water. It is known that the catalyst can be easily eroded if a cement kiln with a high-dust content is considered. To understand this process, numerical simulations have been carried out considering a single catalyst channel in order to study the collision and erosion of fly ash and catalysts at meso scale. Based on a response surface methodology, the effects of five factors on the erosion rate have been studied, namely, the catalyst particle velocity, the particle… More > Graphic Abstract

    A Model for Predicting the Erosion Rate Induced by the Use of a Selective Catalytic Reduction Denitrification Technology in Cement Kilns Flue Gas

  • Open Access

    ARTICLE

    Highly Stereoselective Polymerization of Racemic Lactide by Bimetallic Schiff Base Complexes

    Zhiqiang Sun, Ranlong Duan, Han Zhang, Xuan Pang*, Xianhong Wang, Xuesi Chen

    Journal of Renewable Materials, Vol.3, No.2, pp. 82-90, 2015, DOI:10.7569/JRM.2014.634133

    Abstract A series of bimetallic Salen aluminum (III) complexes with different steric substituents were synthesized. These complexes were used as catalysts to produce polylactide in the ring-opening polymerization of racemic lactide. A kinetic research of polymerization demonstrated that the steric substituents on the phenolate ring of the complexes had remarkable infl uence on the stereoselectivity and the polymerization activity. The highest stereoselectivity was obtained with bulky substituent on the ortho position of the salicylidene moieties. Kinetic studies using all these complexes indicated that the polymerizations were fi rst-ordered with respect to lactide monomers. All these complexes gave highly isotactic polylactides with… More >

Displaying 1-10 on page 1 of 37. Per Page