Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

    Jiapeng Wang1, Bo Zhang1,*, Haoqiang Cheng1, Zhixiang Xu2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3595-3612, 2023, DOI:10.32604/jrm.2023.030005

    Abstract A new method of pretreatment of corn straw with Phanerochaete chrysosporium combined with pyrolysis was proposed to improve the quality of bio-oil. The characterization results demonstrated that microbial pretreatment was an effective method to decrease the lignin, which can achieve a maximum removal rate of 44.19%. Due to the destruction of biomass structure, the content of alkali metal and alkaline earth metal is reduced. Meanwhile, the depolymerized biomass structure created better pyrolysis conditions to promote the pyrolysis efficiency, increase the average decomposition rate of pyrolysis and reduce the residue. In fast pyrolysis, because of the enrichment of cellulose and the… More > Graphic Abstract

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

  • Open Access

    ARTICLE

    Catalytic Pyrolysis of Soybean Oil with CaO/Bio-Char Based Catalyst to Produce High Quality Biofuel

    Lujiang Xu, Geliang Xie, Xianjun Zhou, Yucheng Liu, Zhen Fang*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3107-3118, 2022, DOI:10.32604/jrm.2022.020691

    Abstract In this paper, CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)2 and rice straw, and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel. In this co-pyrolysis process, CaO particles has been successfully embedded on the bio-char surface. During the catalytic pyrolysis process, CaO/bio-char showed a good catalytic performance on the deoxygenation of soybean oil. Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically, higher pyrolysis temperature lead to seriously cracking reactions, lower bio-oil yield and higher gases yield, and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content… More > Graphic Abstract

    Catalytic Pyrolysis of Soybean Oil with CaO/Bio-Char Based Catalyst to Produce High Quality Biofuel

Displaying 1-10 on page 1 of 2. Per Page