Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Novel Evidential Reasoning Rule with Causal Relationships between Evidence

    Shanshan Liu1, Liang Chang1,*, Guanyu Hu1,2, Shiyu Li1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1113-1134, 2025, DOI:10.32604/cmc.2025.067240 - 29 August 2025

    Abstract The evidential reasoning (ER) rule framework has been widely applied in multi-attribute decision analysis and system assessment to manage uncertainty. However, traditional ER implementations rely on two critical limitations: 1) unrealistic assumptions of complete evidence independence, and 2) a lack of mechanisms to differentiate causal relationships from spurious correlations. Existing similarity-based approaches often misinterpret interdependent evidence, leading to unreliable decision outcomes. To address these gaps, this study proposes a causality-enhanced ER rule (CER-e) framework with three key methodological innovations: 1) a multidimensional causal representation of evidence to capture dependency structures; 2) probabilistic quantification of causal… More >

  • Open Access

    ARTICLE

    Uncovering Causal Relationships for Debiased Repost Prediction Using Deep Generative Models

    Wu-Jiu Sun1, Xiao Fan Liu1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4551-4573, 2024, DOI:10.32604/cmc.2024.057714 - 19 December 2024

    Abstract Microblogging platforms like X (formerly Twitter) and Sina Weibo have become key channels for spreading information online. Accurately predicting information spread, such as users’ reposting activities, is essential for applications including content recommendation and analyzing public sentiment. Current advanced models rely on deep representation learning to extract features from various inputs, such as users’ social connections and repost history, to forecast reposting behavior. Nonetheless, these models frequently ignore intrinsic confounding factors, which may cause the models to capture spurious relationships, ultimately impacting prediction performance. To address this limitation, we propose a novel Debiased Reposting Prediction… More >

  • Open Access

    ARTICLE

    Design and Experimentation of Causal Relationship Discovery among Features of Healthcare Datasets

    Y. Sreeraman*, S. Lakshmana Pandian

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 539-557, 2021, DOI:10.32604/iasc.2021.017256 - 16 June 2021

    Abstract Causal relationships in a data play vital role in decision making. Identification of causal association in data is one of the important areas of research in data analytics. Simple correlations between data variables reveal the degree of linear relationship. Partial correlation explains the association between two variables within the control of other related variables. Partial association test explains the causality in data. In this paper a couple of causal relationship discovery strategies are proposed using the design of partial association tree that makes use of partial association test among variables. These decision trees are different… More >

Displaying 1-10 on page 1 of 3. Per Page