Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

    Dong Hu1,2, Lingxing Hu3, Facheng Qiu3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1865-1882, 2025, DOI:10.32604/fhmt.2025.073409 - 31 December 2025

    Abstract With the acceleration of industrialization and urbanization, ammonia nitrogen pollution in water bodies has become increasingly severe, making the development of efficient and low-consumption wastewater treatment technologies highly significant. This study employs three-dimensional computational fluid dynamics (CFD) to investigate the cavitation mechanisms and flow field characteristics in a novel jet impingement-negative pressure ammonia removal reactor. The simulation, validated by experimental pressure data with a high degree of consistency, utilizes the Mixture model, the Realizable k-ε turbulence model, and the Schnerr-Sauer cavitation model. The results demonstrate that the flow velocity undergoes a substantial acceleration within the… More > Graphic Abstract

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

  • Open Access

    ARTICLE

    Numerical Analysis of Pressure Propagation Emitted by Collapse of a Single Cavitation Bubble near an Oscillating Wall

    Quang-Thai Nguyen1,2,#, Duong Ngoc Hai3,4,#, The-Duc Nguyen1,3,4,*, Van-Tu Nguyen2,*, Jinyul Hwang2, Warn-Gyu Park2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3433-3452, 2025, DOI:10.32604/cmes.2025.070570 - 23 December 2025

    Abstract This study presents a numerical analysis of the effects of a rigid flat wall with oscillating motion on the pressure wave propagation during a single spherical cavitation bubble collapse at different initial bubble positions. Different nondimensional distances S = 0.8, 0.9, 1.0, 1.1, 1.2 and 1.3 were considered to investigate the effects of initial in-phase and out-of-phase oscillations of the flat wall. Numerical simulations of cavitation bubble collapse near an oscillating wall were conducted using a compressible two-phase flow model. This model incorporated the Volume of Fluid (VOF) interface-sharpening technique on a general curvilinear moving… More > Graphic Abstract

    Numerical Analysis of Pressure Propagation Emitted by Collapse of a Single Cavitation Bubble near an Oscillating Wall

  • Open Access

    ARTICLE

    Energy Transfer during Strong Oscillations of a Spherical Bubble with Non-Ideal Gas Equations of State

    Minki Kim1, Jenny Jyoung Lee2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 345-366, 2025, DOI:10.32604/cmes.2025.070524 - 30 October 2025

    Abstract Spherical bubble oscillations are widely used to model cavitation phenomena in biomedical and naval hydrodynamic systems. During collapse, a sudden increase in surrounding pressure initiates the collapse of a cavitation bubble, followed by a rebound driven by the high internal gas pressure. While the ideal gas equation of state (EOS) is commonly used to describe the internal pressure and temperature of the bubble, it is limited in its capacity to capture molecular-level effects under highly compressed conditions. In the present study, we employ non-ideal EOS for the gas (the van der Waals EOS and its… More >

  • Open Access

    ARTICLE

    Cavitation Performance Analysis of Tip Clearance in a Bulb-Type Hydro Turbine

    Feng Zhou1,2, Qifei Li1,*, Lu Xin1, Shiang Zhang3, Yang Liu1, Ming Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 411-429, 2025, DOI:10.32604/cmes.2025.069639 - 30 October 2025

    Abstract Bulb-type hydro turbines are commonly used in small- to medium-scale hydropower stations due to their compact design and adaptability to low-head conditions. However, long-term operation often results in wear at the runner rim, increasing tip clearance and triggering leakage flow and cavitation. These effects reduce hydraulic efficiency and accelerate blade surface erosion, posing serious risks to unit safety and operational stability. This study investigates the influence of tip clearance on cavitation performance in a 24 MW prototype bulb turbine. A three-dimensional numerical model is developed to simulate various operating conditions with different tip clearance values… More >

  • Open Access

    ARTICLE

    Experimental Acoustic Analysis of Cavitation in a Centrifugal Pump

    Dongwei Wang1,*, Wensheng Ma2, Weiguo Zhao1, Rui Cao2, Youchao Yang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 877-890, 2025, DOI:10.32604/fdmp.2024.055220 - 06 May 2025

    Abstract Cavitation is an unavoidable phenomenon in the operation of centrifugal pumps. Prolonged cavitation can cause significant damage to the components of the flow channel, and in severe cases, it may even interfere with the normal energy exchange processes within the pump. Therefore, effective monitoring of cavitation in centrifugal pumps is crucial. This article presents a study that approaches the issue from an acoustic perspective, using experimental methods to gather and analyze acoustic data at the inlet and outlet of centrifugal pumps across various flow rates, with hydrophones as the primary measuring instruments. Results show that… More >

  • Open Access

    REVIEW

    Progress in the Understanding and Modeling of Cavitation and Related Applications

    Jianying Li1,2,*, Donglai Li1,2, Tiefeng Li1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 445-470, 2025, DOI:10.32604/fdmp.2025.062337 - 01 April 2025

    Abstract Hydrodynamic cavitation, as an efficient technique applied in many physical and chemical treatment methods, has been widely used by various industries and in several technological fields. Relevant generators, designed with specific structures and parameters, can produce cavitation effects, thereby enabling effective treatment and reasonable transformation of substances. This paper reviews the design principles, performance, and practical applications associated with different types of cavitation generators, aiming to provide theoretical support for the optimization of these systems. It systematically analyzes the underpinning mechanisms and the various factors influencing the cavitation phenomena, also conducting a comparative analysis of More > Graphic Abstract

    Progress in the Understanding and Modeling of Cavitation and Related Applications

  • Open Access

    ARTICLE

    Molecular Dynamics Simulation of Bubble Arrangement and Cavitation Number Influence on Collapse Characteristics

    Shuaijie Jiang1, Zechen Zhou1, Xiuli Wang1, Wei Xu2, Wenzhuo Guo1, Qingjiang Xiang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 471-491, 2025, DOI:10.32604/fdmp.2025.059878 - 01 April 2025

    Abstract In nature, cavitation bubbles typically appear in clusters, engaging in interactions that create a variety of dynamic motion patterns. To better understand the behavior of multiple bubble collapses and the mechanisms of inter-bubble interaction, this study employs molecular dynamics simulation combined with a coarse-grained force field. By focusing on collapse morphology, local density, and pressure, it elucidates how the number and arrangement of bubbles influence the collapse process. The mechanisms behind inter-bubble interactions are also considered. The findings indicate that the collapse speed of unbounded bubbles located in lateral regions is greater than that of More >

  • Open Access

    PROCEEDINGS

    Ultrasound Overcomes Dendrite Puncture in Aqueous Zinc Batteries

    Fenghui Wang1,*, Hongye Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012441

    Abstract Aqueous zinc batteries have attracted wide interest due to the high safety of the non-flammable electrolyte. However, the inhomogeneous metal plating during the charging and discharging process generates uncontrollable dendrite growth on the anode surface, which seriously threatens the performance and lifetime of the battery. Herein, we provide a physical method to fragment zinc dendrites by using ultrasound to induce cavitation effects in the electrolyte, which can effectively improve the dielectric structure defects inside the battery and reduce the risk of short circuit. The experimental results show that the roughness and height of zinc deposits More >

  • Open Access

    PROCEEDINGS

    Effect of Slender Bar Structures on the Boundary on Cavitation Bubble Dynamics Due to Self-Focusing Shockwaves

    Jiajun Cui1, Fabian Reuter2, Zhigang Zuo1,*, Shuhong Liu1,*, Claus-Dieter Ohl2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012155

    Abstract When cavitation bubbles collapse near a boundary, they can cause severe cavitation erosion to the boundary, which is a dangerous threat to the rapidly rotating turbines. Prior research has established that for single bubbles a possible mechanism is energy focusing of shockwaves during the non-spherical collapse of cavitation bubbles [1]. This however needs a particularly symmetric environment. A possible approach to reduce the shockwave focusing and thus the erosion would be through suitable modification of the boundary. In a first approach to modify this phenomenon, we introduce the symmetry breaking structure on the boundary in the shape of a slender bar to explore the effect More >

  • Open Access

    PROCEEDINGS

    Bubble Dynamics Within a Droplet: A New Mechanism for Mixing in Binary Immiscible Fluid Systems

    Zhesheng Zhao1, Shuai Li1, Rui Han2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012080

    Abstract This study investigates the interactions between droplets and bubbles within water-in-oil (O/W) and oil-in-water (W/O) systems, a fundamental problem of bubble dynamics in binary immiscible fluid systems. Considering the density ratio between the two fluids and the bubble-to-droplet size ratio, we have refined the classical spherical bubble pulsation equation, Rayleigh collapse time, and the natural frequency. In our experimental study, we found that the Rayleigh-Taylor (RT) instability hardly develops on the surface of the droplet when the densities of the two liquids are comparable. This phenomenon is explained using the classic theory of spherical RT More >

Displaying 1-10 on page 1 of 34. Per Page