Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    CeTrivium: A Stream Cipher Based on Cellular Automata for Securing Real-Time Multimedia Transmission

    Osama S. Younes1,2,*, Abdulmohsen Alharbi1, Ali Yasseen1, Faisal Alshareef1, Faisal Albalawi1, Umar A. Albalawi1,3

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2895-2920, 2023, DOI:10.32604/csse.2023.040162

    Abstract Due to their significant correlation and redundancy, conventional block cipher cryptosystems are not efficient in encrypting multimedia data. Stream ciphers based on Cellular Automata (CA) can provide a more effective solution. The CA have recently gained recognition as a robust cryptographic primitive, being used as pseudorandom number generators in hash functions, block ciphers and stream ciphers. CA have the ability to perform parallel transformations, resulting in high throughput performance. Additionally, they exhibit a natural tendency to resist fault attacks. Few stream cipher schemes based on CA have been proposed in the literature. Though, their encryption/decryption… More >

  • Open Access

    ARTICLE

    N×N Clos Digital Cross-Connect Switch Using Quantum Dot Cellular Automata (QCA)

    Amita Asthana1,*, Anil Kumar1, Preeta Sharan2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2901-2917, 2023, DOI:10.32604/csse.2023.030548

    Abstract Quantum dot cellular automata (QCA) technology is emerging as a future technology which designs the digital circuits at quantum levels. The technology has gained popularity in terms of designing digital circuits, which occupy very less area and less power dissipation in comparison to the present complementary metal oxide semiconductor (CMOS) technology. For designing the routers at quantum levels with non-blocking capabilities various multi-stage networks have been proposed. This manuscript presents the design of the N×N Clos switch matrix as a multistage interconnecting network using quantum-dot cellular automata technology. The design of the Clos switch matrix… More >

  • Open Access

    ARTICLE

    Fast and Efficient Security Scheme for Blockchain-Based IoT Networks

    K. A. Fasila*, Sheena Mathew

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 2097-2114, 2022, DOI:10.32604/cmc.2022.029637

    Abstract

    Internet of Things (IoT) has become widely used nowadays and tremendous increase in the number of users raises its security requirements as well. The constraints on resources such as low computational capabilities and power requirements demand lightweight cryptosystems. Conventional algorithms are not applicable in IoT network communications because of the constraints mentioned above. In this work, a novel and efficient scheme for providing security in IoT applications is introduced. The scheme proposes how security can be enhanced in a distributed IoT application by providing multilevel protection and dynamic key generation in the data uploading and

    More >

  • Open Access

    ARTICLE

    Cellular Automata Based Energy Efficient Approach for Improving Security in IOT

    P. Hemalatha1,*, K. Dhanalakshmi2

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 811-825, 2022, DOI:10.32604/iasc.2022.020973

    Abstract Wireless sensor networks (WSNs) develop IoT (Internet of Things) that carry out an important part and include low-cost intelligent devices to gather information. However, these modern accessories have limitations concerning calculation, time taken for processing, storage capacity, and vitality sources. In addition to such restrictions, the foremost primary challenge for sensor networks is achieving reliable data transfer with the secured transmission in a hostile ambience containing vulnerable nodes. The proposed work initially analyses the relation between deployment configuration, lifetime of the deployed network, and transmission delay with this motivation. Besides, it also introduces a new… More >

  • Open Access

    ARTICLE

    Quantification of Urban Sprawl for Past-To-Future in Abha City, Saudi Arabia

    Saeed AlQadhi1, Javed Mallick1,*, Swapan Talukdar2, Ahmed Ali Bindajam3, Ahmed Ali A. Shohan3, Shahfahad4

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 755-786, 2021, DOI:10.32604/cmes.2021.016640

    Abstract Given that many cities in Saudi Arabia have been observing rapid urbanization since the 1990s, scarce studies on the spatial pattern of urban expansion in Saudi Arabia have been conducted. Therefore, the present study investigates the evidence of land use and land cover (LULC) dynamics and urban sprawl in Abha City of Saudi Arabia, which has been experiencing rapid urbanization, from the past to the future using novel and sophisticated methods. The SVM classifier was used in this study to classify the LULC maps for 1990, 2000, and 2018. The LULC dynamics between 1990–2000, 2000–2018,… More >

  • Open Access

    ARTICLE

    Cellular Automata Simulations of Random Pitting Process on Steel Reinforcement Surface

    Ying Wang*, Haoran Shi, Shibo Ren

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 967-983, 2021, DOI:10.32604/cmes.2021.015792

    Abstract The corrosion of reinforcement in the concrete will cause the effective cross-sectional area of reinforcement to be weakened and the performance of reinforcement to change and lead to the degradation of the bond behavior between reinforcement and concrete, which can seriously affect the mechanical properties of the structural elements. Therefore, it is of great practical significance to accurately simulate the corrosion morphology and the corrosion products of reinforcement. This paper improves the previous cellular automata models and establishes a new cellular automata model framework for simulating the random pitting corrosion process of reinforcement in concrete.… More >

  • Open Access

    ARTICLE

    Exploring Urban Population Forecasting and Spatial Distribution Modeling with Artificial Intelligence Technology

    Yan Zou1,2,3,*, Shaoliang Zhang1, Yanhai Min1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.2, pp. 295-310, 2019, DOI:10.32604/cmes.2019.03873

    Abstract The high precision population forecasting and spatial distribution modeling are very important for the theory and application of population sociology, city planning and Geo-Informatics. However, the two problems need to be solved for providing the high precision population information. One is how to improve the population forecasting precision of small area (e.g., street scale); another is how to improve the spatial resolution of urban population distribution model. To solve the two problems, some new methods are proposed in this contribution. (1) To improve the precision of small area population forecasting, a new method is developed… More >

  • Open Access

    ARTICLE

    Simulation of Damage Evolution and Study of Multi-Fatigue Source Fracture of Steel Wire in Bridge Cables under the Action of Pre-Corrosion and Fatigue

    Ying Wang1,*, Yuqian Zheng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 375-419, 2019, DOI:10.32604/cmes.2019.06905

    Abstract A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper. Based on pitting accelerated crack nucleation theory in combination with continuum mechanics, cellular automata technology (CA) and finite element (FE) analysis, the damage evolution process of steel wire under pre-corrosion and fatigue is simulated. This method automatically generates a high-strength steel wire model with initial random pitting defects, and on the basis of this model, the fatigue damage evolution process is simulated; thus, the fatigue life and… More >

  • Open Access

    ARTICLE

    A Level-set Algorithm for Simulating Wildfire Spread

    T. Ghisu1, B. Arca2, G. Pellizzaro2, P. Duce2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.1, pp. 83-102, 2014, DOI:10.3970/cmes.2014.102.083

    Abstract Level-set approaches are efficient and versatile methods for solving interface tracking problems and have been used in recent years to describe wildland fire propagation. Being based on an Eulerian description of the spread problem, their numerical implementation offers improved computational agility and better portability to parallel computing environments with respect to vector-based simulators. The use of a continuous representation of the fire perimeter in place of the binary formulation used in Cellular Automata avoids the commonly observed distortion of the fire shape. This work presents an algorithm for fire-spread simulation based on a level-set formulation. More >

  • Open Access

    ARTICLE

    Topological Design of Structures Using a Cellular Automata Method

    Yixian Du1,2,3,4, De Chen1, Xiaobo Xiang1, Qihua Tian1, Yi Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.1, pp. 53-75, 2013, DOI:10.3970/cmes.2013.094.053

    Abstract Topological design of continuum structures usually involves numerical instabilities, such as checkerboards and mesh-dependency, which degenerate the manufacturability, the efficiency and the robustness of the optimal design. This paper will propose a new topology optimization method to suppress numerical instabilities occurred in the topology optimization of continua, according to the principle of error amplifier and feedback control in the control system. The design variables associated with topological design are updated based on the Cellular Automata (CA) theory. A couple of typical numerical examples are used to demonstrate the effectiveness of the proposed method in effectively More >

Displaying 1-10 on page 1 of 18. Per Page