Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (912)
  • Open Access

    ARTICLE

    Numerical Evaluation of Variation in ‘Characteristic Distance’ due to Fracture Specimen Thickness and Temperature

    Sanjeev Saxena1, Raghvendra Singh2, Geeta Agnihotri2

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 257-270, 2013, DOI:10.3970/cmc.2013.036.257

    Abstract The present numerical study is an attempt to understand the dependency of characteristic distance on the fracture specimen thickness and temperature. The presented work will be useful to establish the characteristic distance prediction methodology using three dimensional FEM model. Based on the methods proposed for the numerical prediction of characteristic distance, it comes out that it depends on fracture specimen thickness and finally it converges after a specified thickness of fracture specimen. In Armco iron material, characteristic distance varies in temperature ranges where dynamic strain ageing phenomenon is observed, initially decrease and then increases again. More >

  • Open Access

    ARTICLE

    Multivariate Adaptive Regression Splines Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams

    P. Yuvaraj1, A. Ramachandra Murthy2, Nagesh R. Iyer3, Pijush Samui4, S.K. Sekar5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 73-97, 2013, DOI:10.3970/cmc.2013.036.073

    Abstract This paper presents Multivariate Adaptive Regression Splines (MARS) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (GF), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). This paper also presents the details of development of MARS model to predict failure load (Pmax) of high strength concrete (HSC) and ultra high strength concrete (UHSC) beam specimens. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack… More >

  • Open Access

    ARTICLE

    Low and Intermediate Re Solution of Lid Driven Cavity Problem by Local Radial Basis Function Collocation Method

    K. Mramor1, R. Vertnik2,3, B. Šarler1,3,4,5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.036.001

    Abstract This paper explores the application of Local Radial Basis Function Collocation Method (LRBFCM) [Šarler and Vertnik (2006)] for solution of Newtonian incompressible 2D fluid flow for a lid driven cavity problem [Ghia, Ghia, and Shin (1982)] in primitive variables. The involved velocity and pressure fields are represented on overlapping five-noded sub-domains through collocation by using Radial Basis Functions (RBF). The required first and second derivatives of the fields are calculated from the respective derivatives of the RBF’s. The momentum equation is solved through explicit time stepping. The method is alternatively structured with multiquadrics and inverse multiquadrics RBF’s. In addition, two… More >

  • Open Access

    ARTICLE

    Effect of Electric Field on the Response of Clamped-FreeMagnetostrictive/Piezoelectric/Magnetostrictive Laminates

    Kotaro Mori1, Fumio Narita1, Yasuhide Shindo1

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 187-200, 2011, DOI:10.3970/cmc.2011.023.187

    Abstract This work deals with the response of clamped-free magnetostrictive/piezoelectric/magnetostrictive laminates under electric field both numerically and experimentally. The laminate is fabricated using two magnetostrictive Terfenol-D layers and a soft piezoelectric PZT layer. Easy axis of Terfenol-D layers is length direction, while the polarization of PZT layer is the thickness direction. The magnetostriction of the Terfenol-D layers bonded to the upper and lower surfaces of the PZT layer is first measured. Next, a nonlinear finite element analysis is employed to evaluate the second-order magnetoelastic constants in the Terfenol-D layers bonded to the PZT layer using measured data. The induced magnetic field… More >

  • Open Access

    ARTICLE

    Estimation of Natural-Convection Heat-Transfer Characteristics from Vertical Fins Mounted on a Vertical Plate

    H. T. Chen1,K. H. Hsu1, S. K. Lee1, L. Y. Haung1

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 239-260, 2011, DOI:10.3970/cmc.2011.022.239

    Abstract The inverse scheme of the finite difference method in conjunction with the least-squares scheme and experimental measured temperatures is proposed to solve a two-dimensional steady-state inverse heat conduction problem in order to estimate the natural-convection heat transfer coefficient under the isothermal situation [`h] iso from three vertical fins mounted on a vertical plate and fin efficiency hf for various values of the fin spacing and fin height. The measured fin temperatures and ambient air temperature are measured from the present experimental apparatus conducted in a small wind tunnel. The heat transfer coefficient on the middle fin of three vertical fins… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation on the Size of Damage Process Zone of a Concrete Specimen under Mixed-Mode Loading Conditions

    X.P. Shen1, J.L. Feng2

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 185-204, 2010, DOI:10.3970/cmc.2010.020.185

    Abstract The characteristic length of a gradient-dependent damage model is a key parameter, which is usually regarded as the length of damage process zone (DPZ). Value and evolution of the size of DPZ were investigated by both a numerical method and an experimental manner. In the numerical study, the geometrical model adopted was a set of four-point shearing beams; the numerical tool used was the Abaqus/Explicit software. The distance between the front and end of a complete DPZ was obtained. Values of strain components at these points were given out at given time points. The experimental study of the evolution process… More >

  • Open Access

    ARTICLE

    On the Contact Characteristics between Droplet and Microchip/Binding Site for Self-Alignment

    Wen-Hwa Chen1,2, Tsung-Yu Huang1

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 63-84, 2010, DOI:10.3970/cmc.2010.020.063

    Abstract The contact characteristics between a droplet and a microchip/binding site strongly affect the accuracy of self-alignment in the self-assembly of micro-electronic-mechanical systems. This study is mainly to implement the Surface Evolver Program, which is commonly adopted for studying surface shaped by surface tension and other energies, to investigate comprehensively the contact characteristics between the small droplet and the microchip/binding site. The details of changes in the contact line and the contact area when the microchip is subjected to translation, compression, yawing and rolling are drawn. The three-dimensional deformation of the droplet between the microchip and the binding site is also… More >

  • Open Access

    ARTICLE

    On Solving the Direct/Inverse Cauchy Problems of Laplace Equation in a Multiply Connected Domain, Using the Generalized Multiple-Source-Point Boundary-Collocation Trefftz Method &Characteristic Lengths

    Weichung Yeih1, Chein-Shan Liu2, Chung-Lun Kuo3, Satya N. Atluri4

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 275-302, 2010, DOI:10.3970/cmc.2010.017.275

    Abstract In this paper, a multiple-source-point boundary-collocation Trefftz method, with characteristic lengths being introduced in the basis functions, is proposed to solve the direct, as well as inverse Cauchy problems of the Laplace equation for a multiply connected domain. When a multiply connected domain with genus p (p>1) is considered, the conventional Trefftz method (T-Trefftz method) will fail since it allows only one source point, but the representation of solution using only one source point is impossible. We propose to relax this constraint by allowing many source points in the formulation. To set up a complete set of basis functions, we… More >

  • Open Access

    ARTICLE

    The Colossal Piezoresistive Effect in Nickel Nanostrand Polymer Composites and a Quantum Tunneling Model

    Oliver K. Johnson1, Calvin J. Gardner1, David T. Fullwood1, Brent L.Adams1, Nathan Hansen2, George Hansen2

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 87-112, 2010, DOI:10.3970/cmc.2010.015.087

    Abstract A novel nickel nanostrand-silicone composite material at an optimized 15 vol% filler concentration demonstrates a dramatic piezoresistive effect with a negative gauge factor (ratio of percent change in resistivity to strain). The composite volume resistivity decreases in excess of three orders of magnitude at a 60% strain. The piezoresistivity does decrease slightly as a function of cycles, but not significantly as a function of time. The material's resistivity is also temperature dependent, once again with a negative dependence.
    The evidence indicates that nickel strands are physically separated by matrix material even at high volume fractions, and points to a charge… More >

  • Open Access

    ARTICLE

    Modeling Intergranular Crack Propagation in Polycrystalline Materials

    M.A.Arafin1, J.A.Szpunar2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 125-140, 2009, DOI:10.3970/cmc.2009.014.125

    Abstract A novel microstructure, texture and grain boundary character based model has been proposed to simulate the intergranular crack propagation behavior in textured polycrystalline materials. The model utilizes the Voronoi algorithm and Monte Carlo simulations to construct the microstructure with desired grain shape factor, takes the texture description of the materials to assign the orientations of the grains, evaluates the grain boundary character based on the misorientation angle - axis calculated from the orientations of the neighboring grains, and takes into account the inclination of grain boundaries with respect to the external stress direction. Markov Chain theory has been applied to… More >

Displaying 901-910 on page 91 of 912. Per Page