Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Multi-Model Detection of Lung Cancer Using Unsupervised Diffusion Classification Algorithm

    N. Jayanthi1,*, D. Manohari2, Mohamed Yacin Sikkandar3, Mohamed Abdelkader Aboamer3, Mohamed Ibrahim Waly3, C. Bharatiraja4

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1317-1329, 2022, DOI:10.32604/iasc.2022.018974 - 22 September 2021

    Abstract Lung cancer is a curable disease if detected early, and its mortality rate decreases with forwarding treatment measures. At first, an easy and accurate way to detect is by using image processing techniques on the cancer-affected images captured from the patients. This paper proposes a novel lung cancer detection method. Firstly, an adaptive median filter algorithm (AMF) is applied to preprocess those images for improving the quality of the affected area. Then, a supervised image edge detection algorithm (SIED) is presented to segment those images. Then, feature extraction is employed to extract the mean, standard More >

  • Open Access

    ARTICLE

    Blockchain-Based Decision Tree Classification in Distributed Networks

    Jianping Yu1,2,3, Zhuqing Qiao1, Wensheng Tang1,2,3,*, Danni Wang1, Xiaojun Cao4

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 713-728, 2021, DOI:10.32604/iasc.2021.017154 - 01 July 2021

    Abstract In a distributed system such as Internet of things, the data volume from each node may be limited. Such limited data volume may constrain the performance of the machine learning classification model. How to effectively improve the performance of the classification in a distributed system has been a challenging problem in the field of data mining. Sharing data in the distributed network can enlarge the training data volume and improve the machine learning classification model’s accuracy. In this work, we take data sharing and the quality of shared data into consideration and propose an efficient… More >

  • Open Access

    ARTICLE

    Performance of Lung Cancer Prediction Methods Using Different Classification Algorithms

    Yasemin Gültepe*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2015-2028, 2021, DOI:10.32604/cmc.2021.014631 - 05 February 2021

    Abstract In 2018, 1.76 million people worldwide died of lung cancer. Most of these deaths are due to late diagnosis, and early-stage diagnosis significantly increases the likelihood of a successful treatment for lung cancer. Machine learning is a branch of artificial intelligence that allows computers to quickly identify patterns within complex and large datasets by learning from existing data. Machine-learning techniques have been improving rapidly and are increasingly used by medical professionals for the successful classification and diagnosis of early-stage disease. They are widely used in cancer diagnosis. In particular, machine learning has been used in… More >

  • Open Access

    ARTICLE

    Predicting the Type of Crime: Intelligence Gathering and Crime Analysis

    Saleh Albahli1, Anadil Alsaqabi1, Fatimah Aldhubayi1, Hafiz Tayyab Rauf2,*, Muhammad Arif3, Mazin Abed Mohammed4

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2317-2341, 2021, DOI:10.32604/cmc.2021.014113 - 28 December 2020

    Abstract Crimes are expected to rise with an increase in population and the rising gap between society’s income levels. Crimes contribute to a significant portion of the socioeconomic loss to any society, not only through its indirect damage to the social fabric and peace but also the more direct negative impacts on the economy, social parameters, and reputation of a nation. Policing and other preventive resources are limited and have to be utilized. The conventional methods are being superseded by more modern approaches of machine learning algorithms capable of making predictions where the relationships between the… More >

  • Open Access

    ARTICLE

    Remote Sensing Image Classification Algorithm Based on Texture Feature and Extreme Learning Machine

    Xiangchun Liu1, Jing Yu2,Wei Song1, 3, *, Xinping Zhang1, Lizhi Zhao1, Antai Wang4

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1385-1395, 2020, DOI:10.32604/cmc.2020.011308 - 20 August 2020

    Abstract With the development of satellite technology, the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high efficiency and low consumption. As an important tool for satellite remote sensing image processing, remote sensing image classification has become a hot topic. According to the natural texture characteristics of remote sensing images, this paper combines different texture features with the Extreme Learning Machine, and proposes a new remote sensing image classification algorithm. The experimental tests are carried out through the More >

  • Open Access

    ARTICLE

    Classification Algorithm Optimization Based on Triple-GAN

    Kun Fang1, 2, Jianquan Ouyang1, *

    Journal on Artificial Intelligence, Vol.2, No.1, pp. 1-15, 2020, DOI:10.32604/jai.2020.09738 - 15 July 2020

    Abstract Generating an Adversarial network (GAN) has shown great development prospects in image generation and semi-supervised learning and has evolved into TripleGAN. However, there are still two problems that need to be solved in Triple-GAN: based on the KL divergence distribution structure, gradients are easy to disappear and training instability occurs. Since Triple-GAN tags the samples manually, the manual marking workload is too large. Marked uneven and so on. This article builds on this improved Triple-GAN model (Improved Triple-GAN), which uses Random Forests to classify real samples, automate tagging of leaf nodes, and use Least Squares More >

Displaying 11-20 on page 2 of 16. Per Page