Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    XGBoost-Liver: An Intelligent Integrated Features Approach for Classifying Liver Diseases Using Ensemble XGBoost Training Model

    Sumaiya Noor1, Salman A. AlQahtani2, Salman Khan3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1435-1450, 2025, DOI:10.32604/cmc.2025.061700 - 26 March 2025

    Abstract The liver is a crucial gland and the second-largest organ in the human body and also essential in digestion, metabolism, detoxification, and immunity. Liver diseases result from factors such as viral infections, obesity, alcohol consumption, injuries, or genetic predispositions. Pose significant health risks and demand timely diagnosis and treatment to enhance survival rates. Traditionally, diagnosing liver diseases relied heavily on clinical expertise, often leading to subjective, challenging, and time-intensive processes. However, early detection is essential for effective intervention, and advancements in machine learning (ML) have demonstrated remarkable success in predicting various conditions, including Chronic Obstructive… More >

  • Open Access

    ARTICLE

    Classifying Multi-Lingual Reviews Sentiment Analysis in Arabic and English Languages Using the Stochastic Gradient Descent Model

    Yasser Alharbi1, Sarwar Shah Khan2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1275-1290, 2025, DOI:10.32604/cmc.2025.061490 - 26 March 2025

    Abstract Sentiment analysis plays an important role in distilling and clarifying content from movie reviews, aiding the audience in understanding universal views towards the movie. However, the abundance of reviews and the risk of encountering spoilers pose challenges for efficient sentiment analysis, particularly in Arabic content. This study proposed a Stochastic Gradient Descent (SGD) machine learning (ML) model tailored for sentiment analysis in Arabic and English movie reviews. SGD allows for flexible model complexity adjustments, which can adapt well to the Involvement of Arabic language data. This adaptability ensures that the model can capture the nuances… More >

  • Open Access

    ARTICLE

    Classifying Network Flows through a Multi-Modal 1D CNN Approach Using Unified Traffic Representations

    Ravi Veerabhadrappa*, Poornima Athikatte Sampigerayappa

    Computer Systems Science and Engineering, Vol.49, pp. 333-351, 2025, DOI:10.32604/csse.2025.061285 - 19 March 2025

    Abstract In recent years, the analysis of encrypted network traffic has gained momentum due to the widespread use of Transport Layer Security and Quick UDP Internet Connections protocols, which complicate and prolong the analysis process. Classification models face challenges in understanding and classifying unknown traffic because of issues related to interpret ability and the representation of traffic data. To tackle these complexities, multi-modal representation learning can be employed to extract meaningful features and represent them in a lower-dimensional latent space. Recently, auto-encoder-based multi-modal representation techniques have shown superior performance in representing network traffic. By combining the… More >

  • Open Access

    ARTICLE

    A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data

    P. K. A. Chitra1, S. Appavu alias Balamurugan2, S. Geetha3, Seifedine Kadry4,5,6, Jungeun Kim7,*, Keejun Han8

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1367-1385, 2024, DOI:10.32604/csse.2023.034373 - 13 September 2024

    Abstract A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning. The main objective of this work is to create a novel framework for learning and classifying imbalanced multi-label data. This work proposes a framework of two phases. The imbalanced distribution of the multi-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1. Later, an adaptive weighted l21 norm regularized (Elastic-net) multi-label logistic regression is used to predict unseen samples in phase 2. The proposed… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning and Machine Learning-Based Approach to Classify Defects in Hot Rolled Steel Strips for Smart Manufacturing

    Tajmal Hussain, Jungpyo Hong*, Jongwon Seok*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2099-2119, 2024, DOI:10.32604/cmc.2024.050884 - 15 August 2024

    Abstract Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things (IoT) and artificial intelligence (AI). Quality control is an important part of today’s smart manufacturing process, effectively reducing costs and enhancing operational efficiency. As technology in the industry becomes more advanced, identifying and classifying defects has become an essential element in ensuring the quality of products during the manufacturing process. In this study, we introduce a CNN model for classifying defects on hot-rolled steel strip surfaces using hybrid deep learning techniques, incorporating a global… More >

  • Open Access

    ARTICLE

    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760 - 08 July 2024

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

  • Open Access

    ARTICLE

    Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures

    Fayez Alfayez*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1539-1560, 2024, DOI:10.32604/cmc.2024.046443 - 25 April 2024

    Abstract This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spine fractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picture segmentation, feature reduction, and image classification. Two important elements are investigated to reduce the classification time: Using feature reduction software and leveraging the capabilities of sophisticated digital processing hardware. The researchers use different algorithms for picture enhancement, including the Wiener and Kalman filters, and they look into two background correction techniques. The article presents a technique for extracting textural features and evaluates three… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672 - 19 March 2024

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

  • Open Access

    ARTICLE

    Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images

    Shaik Mahaboob Basha1,*, Victor Hugo C. de Albuquerque2, Samia Allaoua Chelloug3,*, Mohamed Abd Elaziz4,5,6,7, Shaik Hashmitha Mohisin8, Suhail Parvaze Pathan9

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1981-2004, 2024, DOI:10.32604/cmes.2023.031425 - 17 November 2023

    Abstract Manual investigation of chest radiography (CXR) images by physicians is crucial for effective decision-making in COVID-19 diagnosis. However, the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques. This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies, including normal cases. Texture information is extracted using gray co-occurrence matrix (GLCM)-based features, while vessel-like features are obtained using Frangi, Sato, and Meijering filters. Machine learning models employing Decision Tree (DT) and Random Forest (RF) approaches are designed to categorize CXR images… More > Graphic Abstract

    Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images

  • Open Access

    ARTICLE

    Integration of Digital Twins and Artificial Intelligence for Classifying Cardiac Ischemia

    Mohamed Ammar1,*, Hamed Al-Raweshidy2,*

    Journal on Artificial Intelligence, Vol.5, pp. 195-218, 2023, DOI:10.32604/jai.2023.045199 - 29 December 2023

    Abstract Despite advances in intelligent medical care, difficulties remain. Due to its complicated governance, designing, planning, improving, and managing the cardiac system remains difficult. Oversight, including intelligent monitoring, feedback systems, and management practises, is unsuccessful. Current platforms cannot deliver lifelong personal health management services. Insufficient accuracy in patient crisis warning programmes. No frequent, direct interaction between healthcare workers and patients is visible. Physical medical systems and intelligent information systems are not integrated. This study introduces the Advanced Cardiac Twin (ACT) model integrated with Artificial Neural Network (ANN) to handle real-time monitoring, decision-making, and crisis prediction. THINGSPEAK… More >

Displaying 1-10 on page 1 of 39. Per Page