Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access


    Efficiently and Conveniently Heparin/ PEG-PCL Core-Shell Microcarriers Fabrication and Optimization via Coaxial-Electrospraying

    Ying Mao1, Chaojing Li1, Peng Ge1, Fujun Wang1,*, Lu Wang1,*

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 143-154, 2018, DOI: 10.3970/mcb.2018.03987

    Abstract Heparin/ PEG-PCL core-shell microcarriers were fabricated in one-step via coaxial-electrospraying technology. Optimization of the coaxial-electrospraying processing is by controlling the PEG-PCL concentration, applied voltage, receiving distance, and feed rate. The influence of the electrospray parameters on microsphere morphology was studied by optical microscopy and scanning electron microscopy. The functional groups and components of the electrosprayed microspheres were characterized by Fourier transform infrared spectroscopy (FTIR). Transmission electron microscope (TEM) observation proved the core-shell structure of heparin-loaded PEG-PCL microspheres. Drug loading and releasing study demonstrated that PEG-PCL concentration could control the encapsulation efficiency and releasing activity of the heparin in the microspheres.… More >

  • Open Access


    An Efficient Petrov-Galerkin Chebyshev Spectral Method Coupled with the Taylor-series Expansion Method of Moments for Solving the Coherent Structures Effect on Particle Coagulation in the Exhaust Pipe

    Chan T.L.1,2, Xie M.L.1,3, Cheung C.S.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.3, pp. 191-212, 2009, DOI:10.3970/cmes.2009.051.191

    Abstract An efficient Petrov-Galerkin Chebyshev spectral method coupled with the Taylor-series expansion method of moments (TEMOM) was developed to simulate the effect of coherent structures on particle coagulation in the exhaust pipe. The Petrov-Galerkin Chebyshev spectral method was presented in detail focusing on the analyticity of solenoidal vector field used for the approximation of the flow. It satisfies the pole condition exactly at the origin, and can be used to expand the vector functions efficiently by using the solenoidal condition. This developed TEMOM method has no prior requirement for the particle size distribution (PSD). It is much simpler than the method… More >

  • Open Access


    Assessment of VOF Strategies for the Analysis of Marangoni Migration, Collisional Coagulation of Droplets and Thermal Wake Effects in Metal Alloys Under Microgravity Conditions

    Marcello Lappa 1

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 51-64, 2005, DOI:10.3970/cmc.2005.002.051

    Abstract A possible approach for the investigation of a number of aspects related to the processing of immiscible alloys, made possible by recent progress in both fields of moving boundary (VOF) methods and speed of computers, is discussed. It can capture in a single numerical treatment and without limiting assumptions both macroscopic information (i.e. the macrophysical problem, heretofore treated in terms of population dynamics) and microscopic details (i.e. the microphysical problem, heretofore treated within the framework of boundary integral methods and/or under the assumption of nondeformable drops). The role played by coalescence in changing the Marangoni migration velocity is discussed together… More >

Displaying 11-20 on page 2 of 13. Per Page