Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access


    AI-Driven FBMC-OQAM Signal Recognition via Transform Channel Convolution Strategy

    Zeliang An1, Tianqi Zhang1,*, Debang Liu1, Yuqing Xu2, Gert Frølund Pedersen2, Ming Shen2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2817-2834, 2023, DOI:10.32604/cmc.2023.037832

    Abstract With the advent of the Industry 5.0 era, the Internet of Things (IoT) devices face unprecedented proliferation, requiring higher communications rates and lower transmission delays. Considering its high spectrum efficiency, the promising filter bank multicarrier (FBMC) technique using offset quadrature amplitude modulation (OQAM) has been applied to Beyond 5G (B5G) industry IoT networks. However, due to the broadcasting nature of wireless channels, the FBMC-OQAM industry IoT network is inevitably vulnerable to adversary attacks from malicious IoT nodes. The FBMC-OQAM industry cognitive radio network (ICRNet) is proposed to ensure security at the physical layer to tackle the above challenge. As a… More >

  • Open Access


    Optimization of Cognitive Radio System Using Enhanced Firefly Algorithm

    Nitin Mittal1, Rohit Salgotra2,3, Abhishek Sharma4, Sandeep Kaur5, S. S. Askar6, Mohamed Abouhawwash7,8,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3159-3177, 2023, DOI:10.32604/iasc.2023.041059

    Abstract The optimization of cognitive radio (CR) system using an enhanced firefly algorithm (EFA) is presented in this work. The Firefly algorithm (FA) is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies. It has already proved its competence in various optimization problems, but it suffers from slow convergence issues. To improve the convergence performance of FA, a new variant named EFA is proposed. The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions, and simulation results show its superior performance compared to biogeography-based optimization (BBO), bat algorithm, artificial bee colony, and FA. As an… More >

  • Open Access


    Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering Scheme for Cognitive Radio Wireless Sensor Networks

    Sami Saeed Binyamin1, Mahmoud Ragab2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 105-119, 2023, DOI:10.32604/csse.2023.037311

    Abstract Cognitive radio wireless sensor networks (CRWSN) can be defined as a promising technology for developing bandwidth-limited applications. CRWSN is widely utilized by future Internet of Things (IoT) applications. Since a promising technology, Cognitive Radio (CR) can be modelled to alleviate the spectrum scarcity issue. Generally, CRWSN has cognitive radio-enabled sensor nodes (SNs), which are energy limited. Hierarchical cluster-related techniques for overall network management can be suitable for the scalability and stability of the network. This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering (MDMO-EAC) Scheme for CRWSN. The MDMO-EAC technique mainly intends to group the… More >

  • Open Access


    Performance Analysis of Three Spectrum Sensing Detection Techniques with Ambient Backscatter Communication in Cognitive Radio Networks

    Shayla Islam1, Anil Kumar Budati1,*, Mohammad Kamrul Hasan2, Saoucene Mahfoudh3, Syed Bilal Hussian Shah3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 813-825, 2023, DOI:10.32604/cmes.2023.027595

    Abstract In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promising approach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio (SNR), there is no dedicated power for the users. Instead, they can transmit information by reflecting the ambient Radio Frequency (RF) signals in the spectrum. Therefore, it is essential to detect user presence in the spectrum for the transmission of data without loss or without collision at a specific time. In this paper, the authors proposed a novel Spectrum Sensing (SS) detection technique in the Cognitive Radio (CR) spectrum, by developing… More >

  • Open Access


    Efficient Resource Allocation Algorithm in Uplink OFDM-Based Cognitive Radio Networks

    Omar Abdulghafoor1, Musbah Shaat2, Ibraheem Shayea3, Ahmad Hamood1, Abdelzahir Abdelmaboud4, Ashraf Osman Ibrahim5, Fadhil Mukhlif6,*, Herish Badal1, Norafida Ithnin6, Ali Khadim Lwas7

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3045-3064, 2023, DOI:10.32604/cmc.2023.033888

    Abstract The computational complexity of resource allocation processes, in cognitive radio networks (CRNs), is a major issue to be managed. Furthermore, the complicated solution of the optimal algorithm for handling resource allocation in CRNs makes it unsuitable to adopt in real-world applications where both cognitive users, CRs, and primary users, PUs, exist in the identical geographical area. Hence, this work offers a primarily price-based power algorithm to reduce computational complexity in uplink scenarios while limiting interference to PUs to allowable threshold. Hence, this paper, compared to other frameworks proposed in the literature, proposes a two-step approach to reduce the complexity of… More >

  • Open Access


    Low Altitude Satellite Constellation for Futuristic Aerial-Ground Communications

    Saifur Rahman Sabuj1, Mohammad Saadman Alam2, Majumder Haider2, Md Akbar Hossain3, Al-Sakib Khan Pathan4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1053-1089, 2023, DOI:10.32604/cmes.2023.024078

    Abstract This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks. To achieve the generic goals of fifthgeneration and beyond wireless networks, the existing aerial network architecture needs to be revisited. The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper. Moreover, we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage. We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial… More > Graphic Abstract

    Low Altitude Satellite Constellation for Futuristic Aerial-Ground Communications

  • Open Access


    Spectrum Sensing Using Optimized Deep Learning Techniques in Reconfigurable Embedded Systems

    Priyesh Kumar*, Ponniyin Selvan

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2041-2054, 2023, DOI:10.32604/iasc.2023.030291

    Abstract The exponential growth of Internet of Things (IoT) and 5G networks has resulted in maximum users, and the role of cognitive radio has become pivotal in handling the crowded users. In this scenario, cognitive radio techniques such as spectrum sensing, spectrum sharing and dynamic spectrum access will become essential components in Wireless IoT communication. IoT devices must learn adaptively to the environment and extract the spectrum knowledge and inferred spectrum knowledge by appropriately changing communication parameters such as modulation index, frequency bands, coding rate etc., to accommodate the above characteristics. Implementing the above learning methods on the embedded chip leads… More >

  • Open Access


    LSTM Based Spectrum Prediction for Real-Time Spectrum Access for IoT Applications

    R. Nandakumar1, Vijayakumar Ponnusamy2,*, Aman Kumar Mishra2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2805-2819, 2023, DOI:10.32604/iasc.2023.028645

    Abstract In the Internet of Things (IoT) scenario, many devices will communicate in the presence of the cellular network; the chances of availability of spectrum will be very scary given the presence of large numbers of mobile users and large amounts of applications. Spectrum prediction is very encouraging for high traffic next-generation wireless networks, where devices/machines which are part of the Cognitive Radio Network (CRN) can predict the spectrum state prior to transmission to save their limited energy by avoiding unnecessarily sensing radio spectrum. Long short-term memory (LSTM) is employed to simultaneously predict the Radio Spectrum State (RSS) for two-time slots,… More >

  • Open Access


    A Double Threshold Energy Detection-Based Neural Network for Cognitive Radio Networks

    Nada M. Elfatih1, Elmustafa Sayed Ali1,5, Maha Abdelhaq2, Raed Alsaqour3,*, Rashid A. Saeed4

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 329-342, 2023, DOI:10.32604/csse.2023.028528


    In cognitive radio networks (CoR), the performance of cooperative spectrum sensing is improved by reducing the overall error rate or maximizing the detection probability. Several optimization methods are usually used to optimize the number of user-chosen for cooperation and the threshold selection. However, these methods do not take into account the effect of sample size and its effect on improving CoR performance. In general, a large sample size results in more reliable detection, but takes longer sensing time and increases complexity. Thus, the locally sensed sample size is an optimization problem. Therefore, optimizing the local sample size for each cognitive… More >

  • Open Access


    Optimized ANFIS Model for Stable Clustering in Cognitive Radio Network

    C. Ambhika1,*, C. Murukesh2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 827-838, 2023, DOI:10.32604/iasc.2023.026832

    Abstract With the demand for wireless technology, Cognitive Radio (CR) technology is identified as a promising solution for effective spectrum utilization. Connectivity and robustness are the two main difficulties in cognitive radio networks due to their dynamic nature. These problems are solved by using clustering techniques which group the cognitive users into logical groups. The performance of clustering in cognitive network purely depends on cluster head selection and parameters considered for clustering. In this work, an adaptive neuro-fuzzy inference system (ANFIS) based clustering is proposed for the cognitive network. The performance of ANFIS improved using hybrid particle swarm and whale optimization… More >

Displaying 1-10 on page 1 of 41. Per Page