Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    An Optimized SW/HW AVMF Design Based on High-Level Synthesis Flow for Color Images

    Turki M. Alanazi1, Ahmed Ben Atitallah1,2,*, Imen Abid2

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 2925-2943, 2021, DOI:10.32604/cmc.2021.017575

    Abstract In this paper, a software/hardware High-level Synthesis (HLS) design is proposed to compute the Adaptive Vector Median Filter (AVMF) in real-time. In fact, this filter is known by its excellent impulsive noise suppression and chromaticity conservation. The software (SW) study of this filter demonstrates that its implementation is too complex. The purpose of this work is to study the impact of using an HLS tool to design ideal floating-point and optimized fixed-point hardware (HW) architectures for the AVMF filter using square root function (ideal HW) and ROM memory (optimized HW), respectively, to select the best HLS architectures and to design… More >

  • Open Access

    ARTICLE

    Median Filtering Forensics Scheme for Color Images Based on Quaternion Magnitude-Phase CNN

    Jinwei Wang1, *, Yang Zhang1

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 99-112, 2020, DOI:10.32604/cmc.2020.04373

    Abstract In the paper, a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images. Compared with conventional convolutional neural network, color images can be processed in a holistic manner in the proposed scheme, which makes full use of the correlation between RGB channels. And due to the use of convolutional neural network, it can effectively avoid the one-sidedness of artificial features. Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection. More >

Displaying 11-20 on page 2 of 12. Per Page