Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    A Compact Self-Isolated MIMO Antenna System for 5G Mobile Terminals

    Muhannad Y. Muhsin1,*, Ali J. Salim2, Jawad K. Ali2

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 919-934, 2022, DOI:10.32604/csse.2022.023102

    Abstract A compact self-isolated Multi Input Multi Output (MIMO) antenna array is presented for 5G mobile phone devices. The proposed antenna system is operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antenna elements placed along two side edges of a mobile device, which meets the current trend requirements of full-screen smartphone devices. Each antenna element is divided into two parts, a front part and back part. The front part consists of an I-shaped feeding line and a modified Hilbert fractal monopole antenna, whereas the back part is an L-shaped element shorted to… More >

  • Open Access

    ARTICLE

    Metamaterial-Based Compact Antenna with Defected Ground Structure for 5G and Beyond

    Md. Mushfiqur Rahman1,*, Md. Shabiul Islam1, Mohammad Tariqul Islam2, Samir Salem Al-Bawri3, Wong Hin Yong1

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2383-2399, 2022, DOI:10.32604/cmc.2022.022150

    Abstract In this paper, a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure (DGS) is investigated as the principle radiating element of an antenna. The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell. However, the orientation which gives low-frequency resonance is considered here. The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two… More >

  • Open Access

    ARTICLE

    A Compact Tri-Band Antenna Based on Inverted-L Stubs for Smart Devices

    Niamat Hussain1, Anees Abbas1, Sang-Myeong Park1, Seong Gyoon Park2, Nam Kim1,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3321-3331, 2022, DOI:10.32604/cmc.2022.020688

    Abstract We designed and constructed a novel, compact tri-band monopole antenna for intelligent devices. Multiband behavior was achieved by placing inverted-L shaped stubs of various lengths in a triangular monopole antenna fed by a coplanar waveguide. The resonance frequency of each band can be controlled by varying the length of the corresponding stub. Three bands, at 2.4 (2.37–2.51), 3.5 (3.34–3.71), and 5.5 (4.6–6.4) GHz, were easily obtained using three stubs of different lengths. For miniaturization, a portion of the longest stub (at 2.4 GHz) was printed on the opposite side of the substrate, and connected to More >

  • Open Access

    ARTICLE

    Helix Inspired 28 GHz Broadband Antenna with End-Fire Radiation Pattern

    Hijab Zahra1, Wahaj Abbas Awan2, Niamat Hussain3,*, Syed Muzahir Abbas1,4, Subhas Mukhopadhyay1

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1935-1944, 2022, DOI:10.32604/cmc.2022.019495

    Abstract This paper presents the design and characterization of a via free planar single turn helix for 28 GHz broadband applications. The proposed antenna is designed using ROGERS RO4003 material, having a simple structure and end-fire radiation pattern. The antenna comprises of a compact dimension of 1.36 λ0 × 0.9 λ0 with a thickness of 0.0189 λ0 (where λ0 is the free-space wavelength at the central frequency of 28 GHz). Parametric study has been carried out to investigate the impact of key design parameters and to achieve an optimum design. Results show a good agreement between the simulated… More >

  • Open Access

    ARTICLE

    Comparative Design and Study of A 60 GHz Antenna for Body-Centric Wireless Communications

    Kaisarul Islam1, Tabia Hossain1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Roobaea Alroobaea2

    Computer Systems Science and Engineering, Vol.37, No.1, pp. 19-32, 2021, DOI:10.32604/csse.2021.015528

    Abstract In this paper performance of three different designs of a 60 GHz high gain antenna for body-centric communication has been evaluated. The basic structure of the antenna is a slotted patch consisting of a rectangular ring radiator with passive radiators inside. The variation of the design was done by changing the shape of these passive radiators. For free space performance, two types of excitations were used—waveguide port and a coaxial probe. The coaxial probe significantly improved both the bandwidth and radiation efficiency. The center frequency of all the designs was close to 60 GHz with… More >

Displaying 1-10 on page 1 of 5. Per Page