Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Prediction and Comparative Analysis of Rooftop PV Solar Energy Efficiency Considering Indoor and Outdoor Parameters under Real Climate Conditions Factors with Machine Learning Model

    Gökhan Şahin1,*, Ihsan Levent2, Gültekin Işık2, Wilfried van Sark1, Sabir Rustemli3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1215-1248, 2025, DOI:10.32604/cmes.2025.063193 - 11 April 2025

    Abstract This research investigates the influence of indoor and outdoor factors on photovoltaic (PV) power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and improving renewable energy efficiency. To predict plant efficiency, nineteen variables are analyzed, consisting of nine indoor photovoltaic panel characteristics (Open Circuit Voltage (Voc), Short Circuit Current (Isc), Maximum Power (Pmpp), Maximum Voltage (Umpp), Maximum Current (Impp), Filling Factor (FF), Parallel Resistance (Rp), Series Resistance (Rs), Module Temperature) and ten environmental factors (Air Temperature, Air Humidity, Dew Point, Air Pressure, Irradiation, Irradiation Propagation, Wind Speed, Wind… More >

  • Open Access

    ARTICLE

    Performance vs. Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems

    Sarah M. Kamel1,*, Mai A. Fadel2, Lamiaa Elrefaei1,3, Shimaa I. Hassan1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 373-411, 2025, DOI:10.32604/cmes.2025.062837 - 11 April 2025

    Abstract Visual question answering (VQA) is a multimodal task, involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer. In this paper, we propose a VQA system intended to answer yes/no questions about real-world images, in Arabic. To support a robust VQA system, we work in two directions: (1) Using deep neural networks to semantically represent the given image and question in a fine-grained manner, namely ResNet-152 and Gated Recurrent Units (GRU). (2) Studying the role of the utilized multimodal bilinear… More >

  • Open Access

    REVIEW

    Particle Swarm Optimization: Advances, Applications, and Experimental Insights

    Laith Abualigah*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1539-1592, 2025, DOI:10.32604/cmc.2025.060765 - 17 February 2025

    Abstract Particle Swarm Optimization (PSO) has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields. This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications, but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms. Covering six strategic areas, which include Data Mining, Machine Learning, Engineering Design, Energy Systems, Healthcare, and Robotics, the study demonstrates the versatility and effectiveness of the PSO. Experimental results are, however, used to show the strong and More >

  • Open Access

    ARTICLE

    Optimizing Airline Review Sentiment Analysis: A Comparative Analysis of LLaMA and BERT Models through Fine-Tuning and Few-Shot Learning

    Konstantinos I. Roumeliotis1,*, Nikolaos D. Tselikas2, Dimitrios K. Nasiopoulos3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2769-2792, 2025, DOI:10.32604/cmc.2025.059567 - 17 February 2025

    Abstract In the rapidly evolving landscape of natural language processing (NLP) and sentiment analysis, improving the accuracy and efficiency of sentiment classification models is crucial. This paper investigates the performance of two advanced models, the Large Language Model (LLM) LLaMA model and NLP BERT model, in the context of airline review sentiment analysis. Through fine-tuning, domain adaptation, and the application of few-shot learning, the study addresses the subtleties of sentiment expressions in airline-related text data. Employing predictive modeling and comparative analysis, the research evaluates the effectiveness of Large Language Model Meta AI (LLaMA) and Bidirectional Encoder… More >

  • Open Access

    ARTICLE

    Overfitting in Machine Learning: A Comparative Analysis of Decision Trees and Random Forests

    Erblin Halabaku, Eliot Bytyçi*

    Intelligent Automation & Soft Computing, Vol.39, No.6, pp. 987-1006, 2024, DOI:10.32604/iasc.2024.059429 - 30 December 2024

    Abstract Machine learning has emerged as a pivotal tool in deciphering and managing this excess of information in an era of abundant data. This paper presents a comprehensive analysis of machine learning algorithms, focusing on the structure and efficacy of random forests in mitigating overfitting—a prevalent issue in decision tree models. It also introduces a novel approach to enhancing decision tree performance through an optimized pruning method called Adaptive Cross-Validated Alpha CCP (ACV-CCP). This method refines traditional cost complexity pruning by streamlining the selection of the alpha parameter, leveraging cross-validation within the pruning process to achieve More >

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT

    Arar Al Tawil1,*, Laiali Almazaydeh2, Doaa Qawasmeh3, Baraah Qawasmeh4, Mohammad Alshinwan1,5, Khaled Elleithy6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3395-3412, 2024, DOI:10.32604/cmc.2024.057279 - 18 November 2024

    Abstract Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information, a practice known as phishing. This study utilizes three distinct methodologies, Term Frequency-Inverse Document Frequency, Word2Vec, and Bidirectional Encoder Representations from Transformers, to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks. The study uses feature extraction methods to assess the performance of Logistic Regression, Decision Tree, Random Forest, and Multilayer Perceptron algorithms. The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron (Precision: 0.98, Recall: 0.98, F1-score: 0.98, Accuracy: 0.98). Word2Vec’s More >

  • Open Access

    REVIEW

    AI-Driven Pattern Recognition in Medicinal Plants: A Comprehensive Review and Comparative Analysis

    Mohd Asif Hajam1, Tasleem Arif1, Akib Mohi Ud Din Khanday2, Mudasir Ahmad Wani3,*, Muhammad Asim3,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2077-2131, 2024, DOI:10.32604/cmc.2024.057136 - 18 November 2024

    Abstract The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and cost-effectiveness compared to modern drugs. Throughout the extensive history of medicinal plant usage, various plant parts, including flowers, leaves, and roots, have been acknowledged for their healing properties and employed in plant identification. Leaf images, however, stand out as the preferred and easily accessible source of information. Manual plant identification by plant taxonomists is intricate, time-consuming, and prone to errors, relying heavily on human perception. Artificial intelligence (AI) techniques offer a solution by automating plant recognition processes. This study thoroughly examines cutting-edge… More >

  • Open Access

    ARTICLE

    Segmentation of Head and Neck Tumors Using Dual PET/CT Imaging: Comparative Analysis of 2D, 2.5D, and 3D Approaches Using UNet Transformer

    Mohammed A. Mahdi1, Shahanawaj Ahamad2, Sawsan A. Saad3, Alaa Dafhalla3, Alawi Alqushaibi4, Rizwan Qureshi5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2351-2373, 2024, DOI:10.32604/cmes.2024.055723 - 31 October 2024

    Abstract The segmentation of head and neck (H&N) tumors in dual Positron Emission Tomography/Computed Tomography (PET/CT) imaging is a critical task in medical imaging, providing essential information for diagnosis, treatment planning, and outcome prediction. Motivated by the need for more accurate and robust segmentation methods, this study addresses key research gaps in the application of deep learning techniques to multimodal medical images. Specifically, it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution. The primary research questions guiding this study… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Organic and Compound Fertilizers on the Yield and Metabolites of Platostoma palustre

    Suhua Huang1,2, Hao Chen1,2, Fan Wei1,3, Changqian Quan1,3, Meihua Xu1,3, Zhining Chen4, Jingchun Li4, Hongyu Li5, Lijun Shi1,*, Danfeng Tang1,2,3,4,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.10, pp. 2645-2662, 2024, DOI:10.32604/phyton.2024.053492 - 30 October 2024

    Abstract To explore the effect of fertilizers on the yield and quality of Platostoma palustre, in this study, P. palustre was utilized as the research material, and field experiments were conducted with different application rates of compound fertilizer and organic fertilizer and non-targeted metabolomics analysis was further employed to compare and analyze the differences in the metabolic components between the compound fertilizer and organic fertilizer treatments. The results of field experiments demonstrated that both compound and organic fertilizers could promote the fresh weight, shade dry weight, and dry weight of P. palustre, with 450 kg hm−2 compound fertilizer and 4500… More >

Displaying 1-10 on page 1 of 45. Per Page