Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (345)
  • Open Access


    The Effect of the Geometrical Non-Linearity on the Stress Distribution in the Infinite Elastic Body with a Periodically Curved Row of Fibers

    Surkay D. Akbarov1,2, Resat Kosker3, Yasemen Ucan3

    CMC-Computers, Materials & Continua, Vol.17, No.2, pp. 77-102, 2010, DOI:10.3970/cmc.2010.017.077

    Abstract In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity, the method for determination of the stress-strain state in the infinite body containing periodically located row of periodically curved fibers is developed. It is assumed that the midlines of the fibers are in the same plane. With respect to the location of the fibers according to each other the sinphase and antiphase curving cases are considered. Numerical results on the effect of the geometrical non-linearity to the values of the self More >

  • Open Access


    Thermo-Elastic Localization Relationships for Multi-Phase Composites

    Giacomo Landi1, Surya R. Kalidindi2

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 273-294, 2010, DOI:10.3970/cmc.2010.016.273

    Abstract In this paper, we present a computationally efficient multi-scale framework for predicting the local fields in the representative volume element of a multiphase material system subjected to thermo-mechanical loading conditions. This framework for localization relationships is a natural extension of our recent work on two-phase composites subjected to purely mechanical loading. In this novel approach, the localization relationships take on a simple structure expressed as a series sum, where each term in the series is a convolution product of local structure and the governing physics expressed in the form of influence coefficients. Another salient feature More >

  • Open Access


    The Colossal Piezoresistive Effect in Nickel Nanostrand Polymer Composites and a Quantum Tunneling Model

    Oliver K. Johnson1, Calvin J. Gardner1, David T. Fullwood1, Brent L.Adams1, Nathan Hansen2, George Hansen2

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 87-112, 2010, DOI:10.3970/cmc.2010.015.087

    Abstract A novel nickel nanostrand-silicone composite material at an optimized 15 vol% filler concentration demonstrates a dramatic piezoresistive effect with a negative gauge factor (ratio of percent change in resistivity to strain). The composite volume resistivity decreases in excess of three orders of magnitude at a 60% strain. The piezoresistivity does decrease slightly as a function of cycles, but not significantly as a function of time. The material's resistivity is also temperature dependent, once again with a negative dependence.
    The evidence indicates that nickel strands are physically separated by matrix material even at high volume fractions, and More >

  • Open Access


    Limit Load of Soil-Root Composites

    Yang Pu1, Xiang Zhihai1, Hu Xiasong2, Li Guorong2, Zhu Haili2, Mao XiaoqinCen2, Zhangzhi1,3

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 117-138, 2009, DOI:10.3970/cmc.2009.010.117

    Abstract This paper studies the influence of root reinforcement on shallow soil protection by using Finite Element (FE) method. Taking the root-soil composite as a periodic material, the homogenization method is used to construct a Representative Volume Element (RVE) that consists of roots and soil. This RVE is discretized by a two-dimensional (2-D) FE mesh, while special formulation is established so that this model is capable of describing three-dimensional (3-D) deformations when the strain is invariant along the fiber axis. The important effect of debonding on the interface between the fiber and the matrix is also More >

  • Open Access


    Numerical Modelling of Damage Response of Layered Composite Plates

    I. Smojver1, J. Sorić2

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 13-24, 2006, DOI:10.3970/cmc.2007.003.013

    Abstract The paper addresses the problem of impact on layered fibre composites. The behaviour of composite laminates under impact loading is dependent not only on the velocity but also on the mass and geometry of the impactor. Using micromechanical Mori-Tanaka approach, mechanical properties of the laminate have been calculated utilizing the material constants of the fibre and matrix. General purpose FEM software ABAQUS has been modified by means of user written subroutines for modelling of composite laminate and rigid impactor. The kinematics of the impact has been simulated using transient dynamic analysis. Employing user defined multi More >

Displaying 341-350 on page 35 of 345. Per Page