Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (230)
  • Open Access

    ARTICLE

    A stabilized RBF collocation scheme for Neumann type boundary value problems

    Nicolas Ali Libre1,2, Arezoo Emdadi2, Edward J. Kansa3,4, Mohammad Rahimian2, Mohammad Shekarchi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.1, pp. 61-80, 2008, DOI:10.3970/cmes.2008.024.061

    Abstract The numerical solution of partial differential equations (PDEs) with Neumann boundary conditions (BCs) resulted from strong form collocation scheme are typically much poorer in accuracy compared to those with pure Dirichlet BCs. In this paper, we show numerically that the reason of the reduced accuracy is that Neumann BC requires the approximation of the spatial derivatives at Neumann boundaries which are significantly less accurate than approximation of main function. Therefore, we utilize boundary treatment schemes that based upon increasing the accuracy of spatial derivatives at boundaries. Increased accuracy of the spatial derivative approximation can be achieved by h-refinement reducing the… More >

  • Open Access

    ARTICLE

    A Systematic Approach for the Development of Weakly–Singular BIEs

    Z. D. Han, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.1, pp. 41-52, 2007, DOI:10.3970/cmes.2007.021.041

    Abstract Straight-forward systematic derivations of the weakly singular boundary integral equations (BIEs) are presented, following the simple and directly-derived approach by Okada, Rajiyah, and Atluri (1989b) and Han and Atluri (2002). A set of weak-forms and their algebraic combinations have been used to avoid the hyper-singularities, by directly applying the "intrinsic properties'' of the fundamental solutions. The systematic decomposition of the kernel functions of BIEs is presented for regularizing the BIEs. The present approach is general, and is applied to developing weakly-singular BIEs for solids and acoustics successfully. More >

  • Open Access

    ARTICLE

    Symmetric Variational Formulation of BIE for Domain Decomposition Problems in Elasticity -- An SGBEM Approach for Nonconforming Discretizations of Curved Interfaces

    R. Vodička1, V. Mantič2, F. París2

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.3, pp. 173-204, 2007, DOI:10.3970/cmes.2007.017.173

    Abstract An original approach to solve domain decomposition problems by the symmetric Galerkin boundary element method is developed. The approach, based on a new variational principle for such problems, yields a fully symmetric system of equations. A natural property of the proposed approach is its capability to deal with nonconforming discretizations along straight and curved interfaces, allowing in this way an independent meshing of non-overlapping subdomains to be performed. Weak coupling conditions of equilibrium and compatibility at an interface are obtained from the critical point conditions of the energy functional. Equilibrium is imposed through local traction (Neumann) boundary conditions prescribed on… More >

  • Open Access

    ARTICLE

    Computational Modelling of Isotropic Multiplicative Growth

    G. Himpel, E. Kuhl, A. Menzel, P. Steinmann1

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.2, pp. 119-134, 2005, DOI:10.3970/cmes.2005.008.119

    Abstract The changing mass of biomaterials can either be modelled at the constitutive level or at the kinematic level. This contribution attends on the description of growth at the kinematic level. The deformation gradient will be multiplicatively split into a growth part and an elastic part. Hence, in addition to the material and the spatial configuration, we consider an intermediate configuration or grown configuration without any elastic deformations. With such an ansatz at hand, contrary to the modelling of mass changes at the constitutive level, both a change in density and a change in volume can be modelled. The algorithmic realisation… More >

  • Open Access

    ARTICLE

    A Meshless Method for the Laplace and Biharmonic Equations Subjected to Noisy Boundary Data

    B. Jin1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 253-262, 2004, DOI:10.3970/cmes.2004.006.253

    Abstract In this paper, we propose a new numerical scheme for the solution of the Laplace and biharmonic equations subjected to noisy boundary data. The equations are discretized by the method of fundamental solutions. Since the resulting matrix equation is highly ill-conditioned, a regularized solution is obtained using the truncated singular value decomposition, with the regularization parameter given by the L-curve method. Numerical experiments show that the method is stable with respect to the noise in the data, highly accurate and computationally very efficient. More >

  • Open Access

    ARTICLE

    A Study on the Properties of Resin Transfer Molding Cyanate Ester and Its T800 Grade Carbon Fiber Composites

    Qiuren Ou1,2,*, Peijun Ji2, Jun Xiao1, Ling Wu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 27-37, 2019, DOI:10.32604/fdmp.2019.04787

    Abstract The properties of resin transfer molding (RTM) cyanate ester and its T800 grade carbon fiber composites were studied with the rheometer, differential scanning calorimetry (DSC), FT-IR, dynamic mechanical analyzer (DMA), thermal gravimetric analysis (TGA), mechanical property testing, and scanning electron microscopy (SEM). The results showed that the temperature of cyanate ester suitable for RTM process was 70℃. Curing process of the resin was 130℃/2 h+160℃/2 h+200℃/2 h+220℃/4 h. Glass transition temperature and heat decomposition temperature of the cured resin are 289℃ and 415℃, respectively. Mechanical properties of T800/RTM cyanate composites are 13.5% higher than that of T700/RTM cyanate composites and… More >

  • Open Access

    ARTICLE

    Wave Propagation around Thin Structures using the MFS

    L. Godinho A. 1, A. Tadeu1, P. Amado Mendes1

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 117-128, 2007, DOI:10.3970/cmc.2007.005.117

    Abstract This paper presents a strategy for using the Method of Fundamental Solutions (MFS) to model the propagation of elastic waves around thin structures, like empty cracks or thin rigid screens, located in a homogeneous elastic medium. The authors make use of a simple approach for modeling these propagation conditions using the MFS together with decomposition of the domain into distinct regions. This approach makes it possible to avoid the undetermined system of equations that arises from imposing boundary conditions at both sides of a thin structure. The numerical implementation of the MFS is performed in the frequency domain, making use… More >

  • Open Access

    ARTICLE

    A Robust Image Watermarking Scheme Using Z-Transform, Discrete Wavelet Transform and Bidiagonal Singular Value Decomposition

    N. Jayashree1,*, R. S. Bhuvaneswaran1

    CMC-Computers, Materials & Continua, Vol.58, No.1, pp. 263-285, 2019, DOI:10.32604/cmc.2019.03924

    Abstract Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images, videos, and audio data. Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties. This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform (DWT), Z-transform (ZT) and Bidiagonal Singular Value Decomposition (BSVD). The original image is decomposed into 3-level DWT, and then, ZT is applied on the HH3 and HL3 sub-bands. The watermark image is encrypted using Arnold Cat Map. BSVD for the watermark and transformed original image… More >

  • Open Access

    ARTICLE

    Minimizing Thermal Residual Stress in Ni/Al2O3 Functionally Graded Material Plate by Volume Fraction Optimization

    Xing Wei1,2, Wen Chen1,3, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.48, No.1, pp. 1-23, 2015, DOI:10.3970/cmc.2015.048.001

    Abstract The thermal residual stress in the fabrication of functionally graded material (FGM) systems can give rise to various mechanical failures. For a FGM system under a given fabrication environment, the thermal residual stresses are determined by the spatial distribution of its constituent components. In this study, we optimize a Ni/Al2O3 FGM plate aiming at minimizing the thermal residual stresses through controlling its compositional distribution. Material properties are graded in the thickness direction following a power law distribution in terms of the volume fractions of constituents (P-FGM). An analytical model and a hybrid genetic algorithm with the pattern search are employed… More >

  • Open Access

    ARTICLE

    A Matrix Decomposition MFS Algorithm for Biharmonic Problems in Annular Domains

    T. Tsangaris1, Y.–S. Smyrlis1, 2, A. Karageorghis1, 2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 245-258, 2004, DOI:10.3970/cmc.2004.001.245

    Abstract The Method of Fundamental Solutions (MFS) is a boundary-type method for the solution of certain elliptic boundary value problems. In this work, we develop an efficient matrix decomposition MFS algorithm for the solution of biharmonic problems in annular domains. The circulant structure of the matrices involved in the MFS discretization is exploited by using Fast Fourier Transforms. The algorithm is tested numerically on several examples. More >

Displaying 221-230 on page 23 of 230. Per Page