Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    DC Disturbance Classification Method Based on Compressed Sensing and Encoder

    Huanan Yu1, Xiang Zhang1,*, Jian Wang2

    Energy Engineering, Vol.122, No.12, pp. 5055-5071, 2025, DOI:10.32604/ee.2025.067152 - 27 November 2025

    Abstract Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life. However, DC distribution introduces significant power quality challenges. To address the identification and classification of DC power quality disturbances, this paper proposes a novel methodology integrating Compressed Sensing (CS) with an enhanced Stacked Denoising Autoencoder (SDAE). The proposed approach first employs MATLAB/SIMULINK to model the DC distribution network and generate DC power quality disturbance signals. The measured original signals are then reconstructed using the compressive sensing-based generalized orthogonal matching pursuit (GOMP) algorithm to obtain sparse vectors as the final dataset. Subsequently, More >

  • Open Access

    ARTICLE

    Fault Distance Estimation Method for DC Distribution Networks Based on Sparse Measurement of High-Frequency Electrical Quantities

    He Wang, Shiqiang Li*, Yiqi Liu, Jing Bian

    Energy Engineering, Vol.122, No.11, pp. 4497-4521, 2025, DOI:10.32604/ee.2025.065244 - 27 October 2025

    Abstract With the evolution of DC distribution networks from traditional radial topologies to more complex multi-branch structures, the number of measurement points supporting synchronous communication remains relatively limited. This poses challenges for conventional fault distance estimation methods, which are often tailored to simple topologies and are thus difficult to apply to large-scale, multi-node DC networks. To address this, a fault distance estimation method based on sparse measurement of high-frequency electrical quantities is proposed in this paper. First, a preliminary fault line identification model based on compressed sensing is constructed to effectively narrow the fault search range… More >

  • Open Access

    ARTICLE

    A Disturbance Localization Method for Power System Based on Group Sparse Representation and Entropy Weight Method

    Zeyi Wang1, Mingxi Jiao1, Daliang Wang1, Minxu Liu1, Minglei Jiang2, He Wang3, Shiqiang Li3,*

    Energy Engineering, Vol.121, No.8, pp. 2275-2291, 2024, DOI:10.32604/ee.2024.028223 - 19 July 2024

    Abstract This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method. Three different electrical quantities are selected as observations in the compressed sensing algorithm. The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels. Subsequently, by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,… More >

  • Open Access

    ARTICLE

    Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm

    Huanan Yu, Hangyu Li, He Wang, Shiqiang Li*

    Energy Engineering, Vol.121, No.6, pp. 1535-1555, 2024, DOI:10.32604/ee.2024.046936 - 21 May 2024

    Abstract The escalating deployment of distributed power sources and random loads in DC distribution networks has amplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimal configuration of measurement points, this paper presents an optimal configuration scheme for fault location measurement points in DC distribution networks based on an improved particle swarm optimization algorithm. Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing. The model aims to achieve the minimum number of measurement points while attaining the best compressive sensing reconstruction effect. It incorporates constraints from… More >

  • Open Access

    ARTICLE

    Color Image Compression and Encryption Algorithm Based on 2D Compressed Sensing and Hyperchaotic System

    Zhiqing Dong1, Zhao Zhang1,*, Hongyan Zhou2, Xuebo Chen2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1977-1993, 2024, DOI:10.32604/cmc.2024.047233 - 27 February 2024

    Abstract With the advent of the information security era, it is necessary to guarantee the privacy, accuracy, and dependable transfer of pictures. This study presents a new approach to the encryption and compression of color images. It is predicated on 2D compressed sensing (CS) and the hyperchaotic system. First, an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security. Then, the processed images are concurrently encrypted and compressed using 2D CS. Among them, chaotic sequences replace traditional random measurement matrices to increase the system’s security. Third, the processed images are More >

  • Open Access

    ARTICLE

    A Noise Reduction Method for Multiple Signals Combining Computed Order Tracking Based on Chirplet Path Pursuit and Distributed Compressed Sensing

    Guangfei Jia*, Fengwei Guo, Zhe Wu, Suxiao Cui, Jiajun Yang

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 383-405, 2023, DOI:10.32604/sdhm.2023.026885 - 07 September 2023

    Abstract With the development of multi-signal monitoring technology, the research on multiple signal analysis and processing has become a hot subject. Mechanical equipment often works under variable working conditions, and the acquired vibration signals are often non-stationary and nonlinear, which are difficult to be processed by traditional analysis methods. In order to solve the noise reduction problem of multiple signals under variable speed, a COT-DCS method combining the Computed Order Tracking (COT) based on Chirplet Path Pursuit (CPP) and Distributed Compressed Sensing (DCS) is proposed. Firstly, the instantaneous frequency (IF) is extracted by CPP, and the… More > Graphic Abstract

    A Noise Reduction Method for Multiple Signals Combining Computed Order Tracking Based on Chirplet Path Pursuit and Distributed Compressed Sensing

  • Open Access

    ARTICLE

    Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing

    Huanan Yu1, Gang Han1,*, Hansong Luo2, He Wang1

    Energy Engineering, Vol.120, No.9, pp. 2029-2057, 2023, DOI:10.32604/ee.2023.028365 - 03 August 2023

    Abstract Aiming at the problem that most of the cables in the power collection system of offshore wind farms are buried deep in the seabed, which makes it difficult to detect faults, this paper proposes a two-step fault location method based on compressed sensing and ranging equation. The first step is to determine the fault zone through compressed sensing, and improve the data measurement, dictionary design and algorithm reconstruction: Firstly, the phase-locked loop trigonometric function method is used to suppress the spike phenomenon when extracting the fault voltage, so that the extracted voltage value will not… More >

  • Open Access

    ARTICLE

    Optimized Three-Dimensional Cardiovascular Magnetic Resonance Whole Heart Imaging Utilizing Non-Selective Excitation and Compressed Sensing in Children and Adults with Congenital Heart Disease

    Ingo Paetsch1,*, Roman Gebauer2, Christian Paech2, Frank-Thomas Riede2, Sabrina Oebel1, Andreas Bollmann1, Christian Stehning3, Jouke Smink4, Ingo Daehnert2, Cosima Jahnke1

    Congenital Heart Disease, Vol.18, No.3, pp. 279-294, 2023, DOI:10.32604/chd.2023.029634 - 09 June 2023

    Abstract Background: In congenital heart disease (CHD) patients, detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making. Hence, the present study investigated the applicability of an advanced cardiovascular magnetic resonance (CMR) whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography. Methods: 86 consecutive pediatric patients and adults with congenital heart disease (age, 1 to 74 years; mean, 35 years) underwent CMR imaging including a free-breathing, ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed… More >

  • Open Access

    ARTICLE

    A High-Quality Adaptive Video Reconstruction Optimization Method Based on Compressed Sensing

    Yanjun Zhang1, Yongqiang He2, Jingbo Zhang1, Yaru Zhao3, Zhihua Cui1,*, Wensheng Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 363-383, 2023, DOI:10.32604/cmes.2023.025832 - 23 April 2023

    Abstract The video compression sensing method based on multi hypothesis has attracted extensive attention in the research of video codec with limited resources. However, the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task. To resolve this problem, this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimization method. It mainly includes the optimization of prediction blocks (OPBS), the selection of search windows and the use of neighborhood information. Specifically, the OPBS consists of two parts: the selection of blocks and the optimization of prediction blocks. We combine… More >

  • Open Access

    ARTICLE

    Coherence Based Sufficient Condition for Support Recovery Using Generalized Orthogonal Matching Pursuit

    Aravindan Madhavan1,*, Yamuna Govindarajan1, Neelakandan Rajamohan2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2049-2058, 2023, DOI:10.32604/csse.2023.031566 - 03 November 2022

    Abstract In an underdetermined system, compressive sensing can be used to recover the support vector. Greedy algorithms will recover the support vector indices in an iterative manner. Generalized Orthogonal Matching Pursuit (GOMP) is the generalized form of the Orthogonal Matching Pursuit (OMP) algorithm where a number of indices selected per iteration will be greater than or equal to 1. To recover the support vector of unknown signal ‘x’ from the compressed measurements, the restricted isometric property should be satisfied as a sufficient condition. Finding the restricted isometric constant is a non-deterministic polynomial-time hardness problem due to that More >

Displaying 1-10 on page 1 of 20. Per Page