Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Workability and Strength of Ceramsite Self-Compacting Concrete with Steel Slag Sand

    Suiwei Pan1, Anqi Ren1, Yongli Peng1, Min Wu2, Wanguo Dong3, Chunlin Liu2, Depeng Chen2,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 881-904, 2023, DOI:10.32604/jrm.2022.023000 - 22 September 2022

    Abstract This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand (CSLSCC) to prevent the pollution of steel slag in the environment. The SF, J-ring, visual stability index, and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates. The experiment results indicate that CSLSCC with the 20% volume percentage of steel slag (VPS) performs better workability, higher strength, and higher specific strength. The 7-day compressive More > Graphic Abstract

    Workability and Strength of Ceramsite Self-Compacting Concrete with Steel Slag Sand

  • Open Access

    ARTICLE

    The Effect of Basalt Fiber on Concrete Performance under a Sulfate Attack Environment

    Qiang Su, Jinming Xu*

    Journal of Renewable Materials, Vol.11, No.1, pp. 233-244, 2023, DOI:10.32604/jrm.2023.020573 - 10 August 2022

    Abstract To enhance the sulfate attack resistance performance of concrete, Sulfate erosion test was carried out on basalt fiber concrete with different contents, selecting a concentration of 5% sulfate solution and using a dry−wet cycle mechanism attack of basalt fiber-reinforced concrete (BFRC). Every 15 dry−wet cycles, the mass, compressive strength, splitting tensile strength, and relative dynamic elastic modulus of BFRC were tested, and the SO42− concentration was measured. This work demonstrates that the mass, relative dynamic elastic modulus, compressive and splitting tensile strength of BFRC reveal a trend of climb up and then decline with the process… More >

  • Open Access

    ARTICLE

    Research on the Performance of Titanium Gypsum Concrete Based on Calcium-Silicon-Sulfur Ratio

    Lixia Guo1,2,3, Weikai Wang1, Ling Zhong1,2,3,*, Yuhang Guo1

    Journal of Renewable Materials, Vol.11, No.1, pp. 423-434, 2023, DOI:10.32604/jrm.2022.022942 - 10 August 2022

    Abstract Based on the high sulfur content in titanium gypsum, the concept of the calcium-silicon-sulfur (Ca/Si/S) ratio was proposed. The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum, fly ash, and cement content. The effects of different Ca/Si/S ratios on the mechanical properties, hydration products, and concrete microstructure were investigated by nuclear magnetic resonance, uniaxial compression, and scanning electron microscopy. The result shows: (1) The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease. When the Ca/Si/S ratio is 1:0.85:0.10, the strength reaches the More > Graphic Abstract

    Research on the Performance of Titanium Gypsum Concrete Based on Calcium-Silicon-Sulfur Ratio

  • Open Access

    ARTICLE

    Rock Strength Estimation Using Several Tree-Based ML Techniques

    Zida Liu1, Danial Jahed Armaghani2,*, Pouyan Fakharian3, Diyuan Li4, Dmitrii Vladimirovich Ulrikh5, Natalia Nikolaevna Orekhova6, Khaled Mohamed Khedher7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 799-824, 2022, DOI:10.32604/cmes.2022.021165 - 03 August 2022

    Abstract The uniaxial compressive strength (UCS) of rock is an essential property of rock material in different relevant applications, such as rock slope, tunnel construction, and foundation. It takes enormous time and effort to obtain the UCS values directly in the laboratory. Accordingly, an indirect determination of UCS through conducting several rock index tests that are easy and fast to carry out is of interest and importance. This study presents powerful boosting trees evaluation framework, i.e., adaptive boosting machine, extreme gradient boosting machine (XGBoost), and category gradient boosting machine, for estimating the UCS of sandstone. Schmidt… More >

  • Open Access

    ARTICLE

    A Modeling Method for Predicting the Strength of Cemented Paste Backfill Based on a Combination of Aggregate Gradation Optimization and LSTM

    Bo Zhang1,2, Keqing Li1,2, Siqi Zhang1,2, Yafei Hu1,2, Bin Han1,2,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3539-3558, 2022, DOI:10.32604/jrm.2022.021845 - 14 July 2022

    Abstract Cemented paste backfill (CPB) is a sustainable mining technology that is widely used in mines and helps to improve the mine environment. To investigate the relationship between aggregate grading and different affecting factors and the uniaxial compressive strength (UCS) of the cemented paste backfill (CPB), Talbol gradation theory and neural networks is used to evaluate aggregate gradation to determine the optimum aggregate ratio. The mixed aggregate ratio with the least amount of cement (waste stone content river sand content = 7:3) is obtained by using Talbol grading theory and pile compactness function and combined with… More > Graphic Abstract

    A Modeling Method for Predicting the Strength of Cemented Paste Backfill Based on a Combination of Aggregate Gradation Optimization and LSTM

  • Open Access

    ARTICLE

    Study on the Durability of Recycled Powder Concrete against Sulfate Attack under Partial Immersion Condition

    Hualei Bai1,2, Ying Li1,2,*, Dahu Dai1,2

    Journal of Renewable Materials, Vol.10, No.11, pp. 3059-3078, 2022, DOI:10.32604/jrm.2022.020148 - 29 June 2022

    Abstract In order to make full use of waste recycled fine powder (RFP) in concrete and achieve the goal of carbon neutrality in the concrete industry, the durability of sulfate resistance is an important aspect of evaluating the performance of recycled powder concrete (RPC). Therefore, the durability of RPC under partial sulfate immersion was studied to provide theoretical guidance for understanding the erosion mechanism of RPC. The compressive strength, mass loss, and microstructure change patterns of RPC under partial immersion of 5% Na2SO4 and MgSO4 solutions were analyzed by cubic compressive strength, mass loss rate, SEM-EDS, and… More >

  • Open Access

    ARTICLE

    Fabrication of Baking-Free Bricks Using Gold Tailings and Cemented Materials with Low Alkalinity

    Jiamao Li1,2,*, Tao Si1, Lin Li1, Chuangang Fan1,*, Zhaofang He3, Yuandi Qian3

    Journal of Renewable Materials, Vol.10, No.11, pp. 3041-3058, 2022, DOI:10.32604/jrm.2022.020054 - 29 June 2022

    Abstract The purpose of this paper was using gold mine tailings and cemented materials with low alkalinity to fabricate baking-free bricks. The obtained baking-free brick samples were evaluated by unconfined compressive strength (UCS), water absorption percentage, freezing-thawing cycle, and drying-wetting cycle. The microstructures of the baking-free brick samples were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The baking-free brick specimens cured for 28 days with the addition of 10% mixing water consumption and 1:6 cement/tailing ratio tended to obtain favorable comprehensive properties such as a high compressive strength of 15.15 MPa, a… More > Graphic Abstract

    Fabrication of Baking-Free Bricks Using Gold Tailings and Cemented Materials with Low Alkalinity

  • Open Access

    ARTICLE

    Utilization of Dredged River Sediment in Preparing Autoclaved Aerated Concrete Blocks

    Kai Zhang1,2, Qunshan Wei1,2,*, Shuai Jiang3, Zhemin Shen4, Yanxia Zhang1,2, Rui Tang1,2, Aiwu Yang1,2, Christopher W. K. Chow5

    Journal of Renewable Materials, Vol.10, No.11, pp. 2989-3008, 2022, DOI:10.32604/jrm.2022.019821 - 29 June 2022

    Abstract In this study, the dredged river sediment, soft texture and fine particles, is mixed with other materials and transformed into eco-friendly autoclaved aerated concrete (hereinafter referred to as AAC) blocks. The results indicated the bricks produced under the conditions of 30%–34% dredged river sediment, 24% cement, 10% quick lime, 30% fly ash, 2% gypsum and 0.09% aluminum powder with 0.5 water to material ratio, 2.2 MPa autoclave pressure and 6 h autoclave time, the average compressive strength of 4.5 MPa and average dry density of 716.56 kg/m³ were obtained, the two parameters (strength & density)… More >

  • Open Access

    ARTICLE

    Formaldehyde Free Renewable Thermosetting Foam Based on Biomass Tannin with a Lignin Additive

    Bowen Liu1, Yunxia Zhou1, Hisham Essawy2, Shang Feng1, Xuehui Li1, Jingjing Liao1, Xiaojian Zhou1,3,*, Jun Zhang1,*, Sida Xie1

    Journal of Renewable Materials, Vol.10, No.11, pp. 3009-3024, 2022, DOI:10.32604/jrm.2022.019848 - 29 June 2022

    Abstract This study presents easily prepared free formaldehyde bio-based foam based on a prepared thermosetting resin comprising tannin–lignin–furfuryl alcohol-glyoxal (TLFG) via mechanical stirring in presence of ether as a foaming agent. The foam was developed through a co-polycondensation reaction of glyoxal and furfuryl alcohol with condensed tannin and lignin, which is a forest-derived product. Investigation using scanning electron microscopy (SEM) showed more closed-cell structure without cracks and collapse in the TLFG foam, with a higher apparent density with respect to tannin–furanic–formaldehyde (TFF) foam. Differential scanning calorimetry (DSC), dynamic thermomechanical analysis (DTMA), and thermogravimetric analysis (TGA) investigations More >

  • Open Access

    ARTICLE

    Development and Field Application of Phosphogypsum-Based Soil Subgrade Stabilizers

    Hongfei Yue1, Aiguo Fang2, Sudong Hua1,*, Zenghuan Gu3, Yu Jia1, Cheng Yang4

    Journal of Renewable Materials, Vol.10, No.8, pp. 2247-2261, 2022, DOI:10.32604/jrm.2022.018901 - 25 April 2022

    Abstract A phosphogypsum-based subgrade stabilizer (PBSS) was formulated using industrial by-product phosphogypsum (PG), mixed with slag and calcium-silicon-rich active material (GSR). The active powder (AP) was used to modify PBSS, and PBSS-AP was obtained. PBSS and PBSS-AP were each mixed with 10% silty soil, and cement and lime (CAL: 5% lime + 2% cement) were used as the traditional material for comparative experiments. Samples were cured under standard conditions, and tested for unconfined compressive strength (UCS), water stability, volume expansion, and leachate, to explore the stabilization effect of the three solidified materials on silty soil. The More >

Displaying 21-30 on page 3 of 54. Per Page