Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (501)
  • Open Access

    ARTICLE

    Analyzing the Impact of Blockchain Models for Securing Intelligent Logistics through Unified Computational Techniques

    Mohammed S. Alsaqer1, Majid H. Alsulami2,*, Rami N. Alkhawaji3, Abdulellah A. Alaboudi2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3943-3968, 2023, DOI:10.32604/cmc.2023.042379

    Abstract Blockchain technology has revolutionized conventional trade. The success of blockchain can be attributed to its distributed ledger characteristic, which secures every record inside the ledger using cryptography rules, making it more reliable, secure, and tamper-proof. This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context. Furthermore, it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure. To realize the full potential of the accurate and efficacious use of blockchain in… More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Computational Intelligent Systems for Solving Complex Engineering Problems: Principles and Applications

    Danial Jahed Armaghani1,*, Ahmed Salih Mohammed2,3, Ramesh Murlidhar Bhatawdekar4, Pouyan Fakharian5, Ashutosh Kainthola6, Wael Imad Mahmood7

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2023-2027, 2024, DOI:10.32604/cmes.2023.031701

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Computational Analysis of Novel Extended Lindley Progressively Censored Data

    Refah Alotaibi1, Mazen Nassar2,3, Ahmed Elshahhat4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2571-2596, 2024, DOI:10.32604/cmes.2023.030582

    Abstract A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing, bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied. In this research, using a progressive Type-II censored, various inferences of the MOL model parameters of life are introduced. Utilizing the maximum likelihood method as a classical approach, the estimators of the model parameters and various reliability measures are investigated. Against both symmetric and asymmetric loss functions, the Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) technique with the assumption of independent gamma priors. From the Fisher information… More >

  • Open Access

    ARTICLE

    Enhanced Temporal Correlation for Universal Lesion Detection

    Muwei Jian1,2,*, Yue Jin1, Hui Yu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 3051-3063, 2024, DOI:10.32604/cmes.2023.030236

    Abstract Universal lesion detection (ULD) methods for computed tomography (CT) images play a vital role in the modern clinical medicine and intelligent automation. It is well known that single 2D CT slices lack spatial-temporal characteristics and contextual information compared to 3D CT blocks. However, 3D CT blocks necessitate significantly higher hardware resources during the learning phase. Therefore, efficiently exploiting temporal correlation and spatial-temporal features of 2D CT slices is crucial for ULD tasks. In this paper, we propose a ULD network with the enhanced temporal correlation for this purpose, named TCE-Net. The designed TCE module is applied to enrich the discriminate… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATIONS ON COMBUSTION AND EMISSION CHARACTERISTICS IN A DIRECT INJECTION DIESEL ENGINE AT ELEVATED FUEL TEMPERATURES

    Manimaran Renganathan, Thundil Karuppa Raj Rajagopal*

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-11, 2013, DOI:10.5098/hmt.v4.1.3008

    Abstract In this work, fuel spray parameters are studied by varying the fuel temperature. To overcome the tedious experimental task, a 3-D Computational Fluid Dynamics methodology is adopted by injecting fuel at specified temperatures of 313 K, 353 K and 393 K. The validation is accomplished after the optimal spatial and temporal steps of discretization are found out. At a fuel temperature of 313 K, advancing the injection timing from 6 deg bTDC to 20 deg bTDC increases cylinder peak pressure from 79.8 bar to 90.9 bar. Relation between the emission characteristics and spray SMD and temperature is studied. More >

  • Open Access

    ARTICLE

    ANALYSIS OF CHAOTIC NATURAL CONVECTION IN A TALL RECTANGULAR CAVITY WITH NON-ISOTHERMAL WALLS

    Heather Dillona , Ashley Emeryb,† , Ann Mescherb

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-9, 2013, DOI:10.5098/hmt.v4.2.3004

    Abstract A computational model is presented that extends prior work on unsteady natural convection in a tall rectangular cavity with aspect ratio 10 and applies Proper Orthogonal Decomposition to the results. The solution to the weakly compressible Navier-Stokes equation is computed for a range of Rayleigh numbers between 2 × 107 and 2.2 × 108 with Prandtl number 0.71. A detailed spectral analysis shows dynamic system behavior beyond the Hopf bifurcation that was not previously observed. The wider Rayleigh range reveals new dynamic system behavior for the rectangular geometry, specifically a return to a stable oscillatory behavior that was not predicted… More >

  • Open Access

    ARTICLE

    COMPUTATIONAL STUDIES OF SWIRL RATIO AND INJECTION TIMING ON ATOMIZATION IN A DIRECT INJECTION DIESEL ENGINE

    Renganathan Manimarana, Rajagopal Thundil Karuppa Rajb,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-9, 2014, DOI:10.5098/hmt.5.2

    Abstract Diesel engine combustion modeling presents a challenging task with the formation and breakup of spray into droplets. In this work, 3D-CFD computations are performed to understand the behaviour of spray droplet diameter and temperature during the combustion by varying the swirl ratio and injection timing. After the validation and grid and time independency tests, it is found that increase in swirl ratio from 1.4 to 4.1 results in peak pressure rise of 8 bar and an advancement of injection timing from 6 deg bTDC to 20 deg bTDC results in increase of peak pressure by 15 %. More >

  • Open Access

    EDITORIAL

    Computational Biomechanics and Machine Learning: Charting the Future of Molecular and Cellular Biomechanics Field

    Lining Arnold Ju*

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 95-96, 2023, DOI:10.32604/mcb.2023.042338

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    A Nonstandard Computational Investigation of SEIR Model with Fuzzy Transmission, Recovery and Death Rates

    Ahmed H. Msmali1, Fazal Dayan2,*, Muhammad Rafiq3, Nauman Ahmed4, Abdullah Ali H. Ahmadini1, Hassan A. Hamali5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2251-2269, 2023, DOI:10.32604/cmc.2023.040266

    Abstract In this article, a Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is considered. The equilibrium analysis and reproduction number are studied. The conventional models have made assumptions of homogeneity in disease transmission that contradict the actual reality. However, it is crucial to consider the heterogeneity of the transmission rate when modeling disease dynamics. Describing the heterogeneity of disease transmission mathematically can be achieved by incorporating fuzzy theory. A numerical scheme nonstandard, finite difference (NSFD) approach is developed for the studied model and the results of numerical simulations are presented. Simulations of the constructed scheme are presented. The positivity, convergence and consistency of the… More >

  • Open Access

    ARTICLE

    EFFECT OF DIFFERENT SHAPES ON CHARACTERISTICS OF CONJUGATE HEAT TRANSFER OF MICRO CHANNEL HEAT SINK

    Ankit Kanor, R Manimaran*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-5, 2016, DOI:10.5098/hmt.7.25

    Abstract One of the effective liquid cooling techniques for microelectronic devices is attaching micro channel heat sink to the inactive side of chip. A micro channel heat sink is a device that decreases temperature by flowing coolant through micro channels. The present study focuses on the conjugate heat transfer analyses for different cross-sections (trapezoidal, hexagonal, octagonal and circular).After present study is validated with the published result in the literature, the comparative study of parallel and counter flow configuration is performed. Different geometries are modeled using CATIA V5 software and simulated in ANSYS Fluent R14. From these CFD simulations, preferred configuration of… More >

Displaying 11-20 on page 2 of 501. Per Page