Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (501)
  • Open Access

    ARTICLE

    Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems

    Xia Li1, Zhanyou Ma1,*, Zhibao Mian2, Ziyuan Liu1, Ruiqi Huang1, Nana He1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4129-4152, 2024, DOI:10.32604/cmc.2024.047168

    Abstract Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications. Although there is an extensive literature on qualitative properties such as safety and liveness, there is still a lack of quantitative and uncertain property verifications for these systems. In uncertain environments, agents must make judicious decisions based on subjective epistemic. To verify epistemic and measurable properties in multi-agent systems, this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge (FCTLK). We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy… More >

  • Open Access

    ARTICLE

    SIMULATION OF EMBOLIZATION PARTICLE TRAJECTORIES

    Nessa Johnson, John Abraham*, Zach Helgeson, Michael Hennessey

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-7, 2011, DOI:10.5098/hmt.v2.2.3006

    Abstract A numerical simulation has been performed on the hemodynamics associated with embolization procedures. The flow geometry includes a multibranch artery which is upstream of a targeted tumor. During the procedure, drug-eluting particles are released into the local arterial geometry and are carried downstream by the flowing blood. The intention is to cause embolization of a daughter artery which feeds the tumor. As particles are injected into the blood stream, and as the embolization progresses, it is possible for the particulates to substantially alter the blood flow in the main artery. This alteration may lead to a maldistribution of blood flow… More >

  • Open Access

    ARTICLE

    Computational Verification of Low-Frequency Broadband Noise from Wind Turbine Blades Using Semi-Empirical Methods

    Vasishta Bhargava Nukala*, Chinmaya Prasad Padhy

    Sound & Vibration, Vol.58, pp. 133-150, 2024, DOI:10.32604/sv.2024.047762

    Abstract A significant aerodynamic noise from wind turbines arises when the rotating blades interact with turbulent flows. Though the trailing edge of the blade is an important source of noise at high frequencies, the present work deals with the influence of turbulence distortion on leading edge noise from wind turbine blades which becomes significant in low-frequency regions. Four quasi-empirical methods are studied to verify the accuracy of turbulent inflow noise predicted at low frequencies for a 2 MW horizontal axis wind turbine. Results have shown that all methods exhibited a downward linear trend in noise spectra for a given mean wind… More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Recent Developments on Computational Biology-I

    Carlo Cattani1, Haci Mehmet Baskonus2,*, Armando Ciancio3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2261-2264, 2024, DOI:10.32604/cmes.2024.050209

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems

    Xuechuan Wang1, Wei He1,*, Haoyang Feng1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1263-1294, 2024, DOI:10.32604/cmes.2023.043068

    Abstract Although predictor-corrector methods have been extensively applied, they might not meet the requirements of practical applications and engineering tasks, particularly when high accuracy and efficiency are necessary. A novel class of correctors based on feedback-accelerated Picard iteration (FAPI) is proposed to further enhance computational performance. With optimal feedback terms that do not require inversion of matrices, significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts; however, the computational complexities are comparably low. These advantages enable nonlinear engineering problems to be solved quickly and accurately, even with rough initial guesses from elementary predictors.… More > Graphic Abstract

    Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems

  • Open Access

    ARTICLE

    Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics (MHD) Filled in a Cavity with Y-Shape Heated Fin: FEM Computational Configuration

    Afraz Hussain Majeed1, Rashid Mahmood2, Sayed M. Eldin3, Imran Saddique4,5,*, S. Saleem6, Muhammad Jawad7

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1505-1519, 2024, DOI:10.32604/cmes.2023.030255

    Abstract This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin and magnetic field. The temperature is constant on the Y-shaped fin, insulating the top wall while the remaining walls remain cold. All walls are subject to impermeability and non-slip conditions. The mathematical modeling of the problem is demonstrated by the continuity, momentum, and energy equations incorporating the inclined magnetic field. For elucidating the flow characteristics Finite Element Method (FEM) is implemented using stable FE pair. A hybrid fine mesh is used for discretizing the domain. Velocity and thermal plots concerning parameters are… More >

  • Open Access

    ARTICLE

    3-Qubit Circular Quantum Convolution Computation Using the Fourier Transform with Illustrative Examples

    Artyom M. Grigoryan1,*, Sos S. Agaian2

    Journal of Quantum Computing, Vol.6, pp. 1-14, 2024, DOI:10.32604/jqc.2023.026981

    Abstract In this work, we describe a method of calculation of the 1-D circular quantum convolution of signals represented by 3-qubit superpositions in the computational basis states. The examples of the ideal low pass and high pass filters are described and quantum schemes for the 3-qubit circular convolution are presented. In the proposed method, the 3-qubit Fourier transform is used and one addition qubit, to prepare the quantum superposition for the inverse quantum Fourier transform. It is considered that the discrete Fourier transform of one of the signals is known and calculated in advance and only the quantum Fourier transform of… More >

  • Open Access

    ARTICLE

    Computational Linguistics Based Arabic Poem Classification and Dictarization Model

    Manar Ahmed Hamza1,*, Hala J. Alshahrani2, Najm Alotaibi3, Mohamed K. Nour4, Mahmoud Othman5, Gouse Pasha Mohammed1, Mohammed Rizwanullah1, Mohamed I. Eldesouki6

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 97-114, 2024, DOI:10.32604/csse.2023.034520

    Abstract Computational linguistics is the scientific and engineering discipline related to comprehending written and spoken language from a computational perspective and building artefacts that effectively process and produce language, either in bulk or in a dialogue setting. This paper develops a Chaotic Bird Swarm Optimization with deep ensemble learning based Arabic poem classification and dictarization (CBSOEDL-APCD) technique. The presented CBSOEDL-APCD technique involves the classification and dictarization of Arabic text into Arabic poetries and prose. Primarily, the CBSOEDL-APCD technique carries out data pre-processing to convert it into a useful format. Besides, the ensemble deep learning (EDL) model comprising deep belief network (DBN),… More >

  • Open Access

    REVIEW

    Evolutionary Neural Architecture Search and Its Applications in Healthcare

    Xin Liu1, Jie Li1,*, Jianwei Zhao2, Bin Cao2,*, Rongge Yan3, Zhihan Lyu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 143-185, 2024, DOI:10.32604/cmes.2023.030391

    Abstract Most of the neural network architectures are based on human experience, which requires a long and tedious trial-and-error process. Neural architecture search (NAS) attempts to detect effective architectures without human intervention. Evolutionary algorithms (EAs) for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures. Using multiobjective EAs for NAS, optimal neural architectures that meet various performance criteria can be explored and discovered efficiently. Furthermore, hardware-accelerated NAS methods can improve the efficiency of the NAS. While existing reviews have mainly focused on different strategies to complete NAS, a few studies have explored the… More > Graphic Abstract

    Evolutionary Neural Architecture Search and Its Applications in Healthcare

  • Open Access

    ARTICLE

    High-throughput computational screening and in vitro evaluation identifies 5-(4-oxo-4H-3,1-benzoxazin-2-yl)-2-[3-(4-oxo-4H-3,1-benzoxazin-2-yl) phenyl]-1H-isoindole-1,3(2H)-dione (C3), as a novel EGFR—HER2 dual inhibitor in gastric tumors

    MESFER AL SHAHRANI, REEM GAHTANI, MOHAMMAD ABOHASSAN, MOHAMMAD ALSHAHRANI, YASSER ALRAEY, AYED DERA, MOHAMMAD RAJEH ASIRI, PRASANNA RAJAGOPALAN*

    Oncology Research, Vol.32, No.2, pp. 251-259, 2024, DOI:10.32604/or.2023.043139

    Abstract Gastric cancers are caused primarily due to the activation and amplification of the EGFR or HER2 kinases resulting in cell proliferation, adhesion, angiogenesis, and metastasis. Conventional therapies are ineffective due to the intra-tumoral heterogeneity and concomitant genetic mutations. Hence, dual inhibition strategies are recommended to increase potency and reduce cytotoxicity. In this study, we have conducted computational high-throughput screening of the ChemBridge library followed by in vitro assays and identified novel selective inhibitors that have a dual impediment of EGFR/HER2 kinase activities. Diversity-based High-throughput Virtual Screening (D-HTVS) was used to screen the whole ChemBridge small molecular library against EGFR and… More > Graphic Abstract

    High-throughput computational screening and <i>in vitro</i> evaluation identifies 5-(4-oxo-4H-3,1-benzoxazin-2-yl)-2-[3-(4-oxo-4H-3,1-benzoxazin-2-yl) phenyl]-1H-isoindole-1,3(2H)-dione (C3), as a novel EGFR—HER2 dual inhibitor in gastric tumors

Displaying 1-10 on page 1 of 501. Per Page