Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    REVIEW

    Advanced Feature Selection Techniques in Medical Imaging—A Systematic Literature Review

    Sunawar Khan1, Tehseen Mazhar1,2,*, Naila Sammar Naz1, Fahed Ahmed1, Tariq Shahzad3, Atif Ali4, Muhammad Adnan Khan5,*, Habib Hamam6,7,8,9

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2347-2401, 2025, DOI:10.32604/cmc.2025.066932 - 23 September 2025

    Abstract Feature selection (FS) plays a crucial role in medical imaging by reducing dimensionality, improving computational efficiency, and enhancing diagnostic accuracy. Traditional FS techniques, including filter, wrapper, and embedded methods, have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data. Deep learning-based FS methods, particularly Convolutional Neural Networks (CNNs) and autoencoders, have demonstrated superior performance but lack interpretability. Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution, offering improved accuracy and explainability. Furthermore, integrating multi-modal imaging data (e.g., Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron… More >

  • Open Access

    ARTICLE

    IECC-SAIN: Innovative ECC-Based Approach for Secure Authentication in IoT Networks

    Younes Lahraoui1, Jihane Jebrane2, Youssef Amal1, Saiida Lazaar1, Cheng-Chi Lee3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 615-641, 2025, DOI:10.32604/cmes.2025.067778 - 31 July 2025

    Abstract Due to their resource constraints, Internet of Things (IoT) devices require authentication mechanisms that are both secure and efficient. Elliptic curve cryptography (ECC) meets these needs by providing strong security with shorter key lengths, which significantly reduces the computational overhead required for authentication algorithms. This paper introduces a novel ECC-based IoT authentication system utilizing our previously proposed efficient mapping and reverse mapping operations on elliptic curves over prime fields. By reducing reliance on costly point multiplication, the proposed algorithm significantly improves execution time, storage requirements, and communication cost across varying security levels. The proposed authentication… More >

  • Open Access

    REVIEW

    An Overview and Comparative Study of Traditional, Chaos-Based and Machine Learning Approaches in Pseudorandom Number Generation

    Issah Zabsonre Alhassan1,2,*, Gaddafi Abdul-Salaam1, Michael Asante1, Yaw Marfo Missah1, Alimatu Sadia Shirazu1

    Journal of Cyber Security, Vol.7, pp. 165-196, 2025, DOI:10.32604/jcs.2025.063529 - 07 July 2025

    Abstract Pseudorandom number generators (PRNGs) are foundational to modern cryptography, yet existing approaches face critical trade-offs between cryptographic security, computational efficiency, and adaptability to emerging threats. Traditional PRNGs (e.g., Mersenne Twister, LCG) remain widely used in low-security applications despite vulnerabilities to predictability attacks, while machine learning (ML)-driven and chaos-based alternatives struggle to balance statistical robustness with practical deployability. This study systematically evaluates traditional, chaos-based, and ML-driven PRNGs to identify design principles for next-generation systems capable of meeting the demands of high-security environment like blockchain and IoT. Using a framework that quantifies cryptographic robustness (via NIST SP… More >

  • Open Access

    ARTICLE

    Improving the Position Accuracy and Computational Efficiency of UAV Terrain Aided Navigation Using a Two-Stage Hybrid Fuzzy Particle Filtering Method

    Sofia Yousuf1, Muhammad Bilal Kadri2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1193-1210, 2025, DOI:10.32604/cmc.2024.054587 - 03 January 2025

    Abstract Terrain Aided Navigation (TAN) technology has become increasingly important due to its effectiveness in environments where Global Positioning System (GPS) is unavailable. In recent years, TAN systems have been extensively researched for both aerial and underwater navigation applications. However, many TAN systems that rely on recursive Unmanned Aerial Vehicle (UAV) position estimation methods, such as Extended Kalman Filters (EKF), often face challenges with divergence and instability, particularly in highly non-linear systems. To address these issues, this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter. To enhance the… More >

  • Open Access

    ARTICLE

    Swarming Computational Efficiency to Solve a Novel Third-Order Delay Differential Emden-Fowler System

    Wajaree Weera1, Zulqurnain Sabir2, Muhammad Asif Zahoor Raja3, Sakda Noinang4, Thongchai Botmart1,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4833-4849, 2022, DOI:10.32604/cmc.2022.030888 - 28 July 2022

    Abstract The purpose of this research is to construct an integrated neuro swarming scheme using the procedures of the artificial neural networks (ANNs) with the use of global search particle swarm optimization (PSO) along with the competent local search interior-point programming (IPP) called as ANN-PSOIPP. The proposed computational scheme is implemented for the numerical simulations of the third order nonlinear delay differential Emden-Fowler model (TON-DD-EFM). The TON-DD-EFM is based on two types along with the particulars of shape factor, delayed terms, and singular points. A merit function is performed using the optimization of PSOIPP to find More >

  • Open Access

    ARTICLE

    Stress Relaxation and Sensitivity Weight for Bi-Directional Evolutionary Structural Optimization to Improve the Computational Efficiency and Stabilization on Stress-Based Topology Optimization

    Chao Ma, Yunkai Gao*, Yuexing Duan, Zhe Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 715-738, 2021, DOI:10.32604/cmes.2021.011187 - 21 January 2021

    Abstract Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs. To solve the inherent issues of stress-based topology optimization, many schemes are added to the conventional bi-directional evolutionary structural optimization (BESO) method in the previous studies. However, these schemes degrade the generality of BESO and increase the computational cost. This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method. A global stress measure constructed by p-norm function is treated as… More >

  • Open Access

    ARTICLE

    Computer Methodologies for the Comparison of Some Efficient Derivative Free Simultaneous Iterative Methods for Finding Roots of Non-Linear Equations

    Yuming Chu1, Naila Rafiq2, Mudassir Shams3,*, Saima Akram4, Nazir Ahmad Mir3, Humaira Kalsoom5

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 275-290, 2021, DOI:10.32604/cmc.2020.011907 - 30 October 2020

    Abstract In this article, we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations. Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine. Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes, numerical experiments and CPU time-methodology. Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of More >

  • Open Access

    ARTICLE

    A High-Accuracy Single Patch Representation of Multi-Patch Geometries with Applications to Isogeometric Analysis

    Jinlan Xu*, Ningning Sun, Gang Xu

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 627-642, 2020, DOI:10.32604/cmes.2020.010341 - 20 July 2020

    Abstract This paper presents a novel approximating method to construct highprecision single-patch representation of B-spline surface from a multi-patch representation for isogeometric applications. In isogeometric analysis, multi-patch structure is not easy to achieve high continuity between neighboring patches which will reduce the advantage of isogeometric analysis in a sense. The proposed method can achieve high continuity at surface stitching region with low geometric error, and this technique exploits constructing the approximate surface with several control points are from original surfaces, which guarantees the local feature of the surface can be well-preserved with high precision. With the More >

  • Open Access

    ARTICLE

    An Improved Integration for Trimmed Geometries in Isogeometric Analysis

    Jinlan Xu1, Ningning Sun1, Laixin Shu1, Timon Rabczuk2, Gang Xu1,*

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 615-632, 2019, DOI:10.32604/cmc.2019.04464

    Abstract Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design (CAD). In this paper, an improved integration for trimmed geometries in isogeometric analysis (IGA) is proposed. The proposed method can improve the accuracy of the approximation and the condition number of the stiffness matrix. In addition, comparing to the traditional approaches, the trimming techniques can reduce the number of the integration elements with much fewer integration points, which improves the computational efficiency significantly. Several examples are illustrated to show the effectiveness of the proposed approach. More >

  • Open Access

    ARTICLE

    Analytical and FE Modeling of FG Beams Based on A Refined Shear Deformable Beam Theory for Static and Dynamic Analyses of FG BeamsWith Thermoelastic Coupling

    Cong Xie1, Guangyu Shi1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.6, pp. 397-427, 2015, DOI:10.3970/cmes.2015.108.397

    Abstract The static and dynamic thermoelastic analyses of the beams made of functionally graded materials (FGMs) are presented in this paper. Based on the refined third-order shear deformation beam theory proposed by the senior author and the variational principle, the governing equations of FG beams are deduced. The influence of temperature on Young’s modulus and coefficients of thermal expansion is taken into account when FG beams are subjected to thermal loading. The resulting governing equations are a system of the eighth-order differential equations in terms of displacement variables, and the thermoelastic coupling is included in the… More >

Displaying 1-10 on page 1 of 15. Per Page