Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    An Efficient Computational Method for Differential Equations of Fractional Type

    Mustafa Turkyilmazoglu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 47-65, 2022, DOI:10.32604/cmes.2022.020781

    Abstract An effective solution method of fractional ordinary and partial differential equations is proposed in the present paper. The standard Adomian Decomposition Method (ADM) is modified via introducing a functional term involving both a variable and a parameter. A residual approach is then adopted to identify the optimal value of the embedded parameter within the frame of L2 norm. Numerical experiments on sample problems of open literature prove that the presented algorithm is quite accurate, more advantageous over the traditional ADM and straightforward to implement for the fractional ordinary and partial differential equations of the recent focus of mathematical models. Better… More >

  • Open Access

    ARTICLE

    Comparison of Structural Probabilistic and Non-Probabilistic Reliability Computational Methods under Big Data Condition

    Yongfeng Fang1,3, Kong Fah Tee2,*

    Structural Durability & Health Monitoring, Vol.16, No.2, pp. 129-143, 2022, DOI:10.32604/sdhm.2022.020301

    Abstract In this article, structural probabilistic and non-probabilistic reliability have been evaluated and compared under big data condition. Firstly, the big data is collected via structural monitoring and analysis. Big data is classified into different types according to the regularities of the distribution of data. The different stresses which have been subjected by the structure are used in this paper. Secondly, the structural interval reliability and probabilistic prediction models are established by using the stress-strength interference theory under big data of random loads after the stresses and structural strength are comprehensively considered. Structural reliability is computed by using various stress types,… More >

  • Open Access

    ARTICLE

    Bio-Inspired Computational Methods for the Polio Virus Epidemic Model

    Fatimah Abdulrahman Alrawajeh1, F. M. Allehiany2, Ali Raza3,*, Shaimaa A. M. Abdelmohsen4, Tahir Nawaz Cheema5, Muhammad Rafiq6, Muhammad Mohsin7

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2357-2374, 2022, DOI:10.32604/cmc.2022.024604

    Abstract In 2021, most of the developing countries are fighting polio, and parents are concerned with the disabling of their children. Poliovirus transmits from person to person, which can infect the spinal cord, and paralyzes the parts of the body within a matter of hours. According to the World Health Organization (WHO), 18 million currently healthy people could have been paralyzed by the virus during 1988–2020. Almost all countries but Pakistan, Afghanistan, and a few more have been declared polio-free. The mathematical modeling of poliovirus is studied in the population by categorizing it as susceptible individuals (S), exposed individuals (E), infected… More >

  • Open Access

    ARTICLE

    Healthcare Device Security Assessment through Computational Methodology

    Masood Ahmad1, Jehad F. Al-Amri2, Ahmad F. Subahi3, Sabita Khatri2, Adil Hussain Seh1, Mohd Nadeem1, Alka Agrawal1,*

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 811-828, 2022, DOI:10.32604/csse.2022.020097

    Abstract The current study discusses the different methods used to secure healthcare devices and proposes a quantitative framework to list them in order of significances. The study uses the Hesitant Fuzzy (HF), Analytic Hierarchy Process (AHP) integrated with Fuzzy Technical for Order Preference by Similarities to Ideal Solution (TOPSIS) to classify the best alternatives to security techniques for healthcare devices to securing the devices. The technique is enlisted to rate the alternatives based on the degree of satisfaction of their weights. The ranks of the alternatives consequently decide the order of priority for the techniques. A1 was the most probable alternative… More >

  • Open Access

    ARTICLE

    Predicting Genotype Information Related to COVID-19 for Molecular Mechanism Based on Computational Methods

    Lejun Gong1,2,*, Xingxing Zhang1, Li Zhang3, Zhihong Gao4

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 31-45, 2021, DOI:10.32604/cmes.2021.016622

    Abstract Novel coronavirus disease 2019 (COVID-19) is an ongoing health emergency. Several studies are related to COVID-19. However, its molecular mechanism remains unclear. The rapid publication of COVID-19 provides a new way to elucidate its mechanism through computational methods. This paper proposes a prediction method for mining genotype information related to COVID-19 from the perspective of molecular mechanisms based on machine learning. The method obtains seed genes based on prior knowledge. Candidate genes are mined from biomedical literature. The candidate genes are scored by machine learning based on the similarities measured between the seed and candidate genes. Furthermore, the results of… More >

  • Open Access

    ARTICLE

    Computational Methods for Non-Linear Equations with Some Real-World Applications and Their Graphical Analysis

    Amir Naseem1, M.A. Rehman1, Thabet Abdeljawad2,3,4,*

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 805-819, 2021, DOI:10.32604/iasc.2021.019164

    Abstract In this article, we propose some novel computational methods in the form of iteration schemes for computing the roots of non-linear scalar equations in a new way. The construction of these iteration schemes is purely based on exponential series expansion. The convergence criterion of the suggested schemes is also given and certified that the newly developed iteration schemes possess quartic convergence order. To analyze the suggested schemes numerically, several test examples have been given and then solved. These examples also include some real-world problems such as van der Wall’s equation, Plank’s radiation law and kinetic problem equation whose numerical results… More >

  • Open Access

    ARTICLE

    Managing Software Security Risks through an Integrated Computational Method

    Abdullah Alharbi1, Wael Alosaimi1, Hashem Alyami2, Mohd Nadeem3, Mohd Faizan3, Alka Agrawal3, Rajeev Kumar3,4,*, Raees Ahmad Khan3

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 179-194, 2021, DOI:10.32604/iasc.2021.016646

    Abstract Security risk evaluation of web-based healthcare applications is important from a design perspective. The developers as well as the users need to make sure that the applications must be secure. Citing the disastrous effects of unsecured web applications, Accuntix Online states that the IT industry has lost millions of dollars due to security theft and malware attacks. Protecting the integrity of patients’ health data is of utmost importance. Thus, assessing the security risk of web-based healthcare applications should be accorded the highest priority while developing the web applications. To fulfill the security requirements, the developers must meticulously follow the Multi-Criteria… More >

  • Open Access

    ABSTRACT

    A continuum computational method incorporating atomic interactions of materials

    Bin GU, LC Zhang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.3, pp. 89-90, 2011, DOI:10.3970/icces.2011.018.089

    Abstract Bridging the atomic and continuous analyses is an important aspect in multi-scale mechanics. This paper develops a computational method to integrate the atomic potential of a material with the finite element method. The novelty of this method is that the strain energy is calculated from the atomic potential without the assumption in the Cauchy-Born rule that deformation in a virtual atomic cell is homogeneous. In our new method, the virtual atomic cell deformation is interpolated according to the continuum displacements constructed associated with the shape functions. The applications of the method to single crystal Si and Ge bars under uniaxial… More >

  • Open Access

    ABSTRACT

    The analysis of the effects of the platform screen door on the fire driven flow in the deeply underground subway station by using parallel computational method

    Yong-Jun Jang1, Hag-Beom Kim1,2, Woo-Sung Jung1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.1, pp. 19-26, 2009, DOI:10.3970/icces.2009.011.019

    Abstract In this study, fire simulations were performed to analyze the characteristics of the fire driven flow and the effects of the platform screen door on the smoke flow in the station, when the fire occurred in the center of the platform. Soongsil Univ. station (line number 7) was chosen which is the one of the deepest (47m) underground subway stations in the Seoul metro(SMRT). The parallel computational method was employed to compute the heat and mass transfer eqn's with 6 CPUs of the Linux clustering machine. The fire driven flow was simulated using FDS code in which LES method was… More >

  • Open Access

    ABSTRACT

    Computational Methods of Ultrasound Wave Propagation in Healing Long Bones

    D. I. Fotiadis1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.2, pp. 85-92, 2008, DOI:10.3970/icces.2008.005.085

    Abstract Quantitative ultrasound has attracted significant interest in the evaluation of bone fracture healing. Animal and clinical studies have demonstrated that the propagation velocity across fractured bones can be used as an indicator of healing. Researchers have recently employed computational methods for modeling wave propagation in bones aiming to gain insight into the underlying mechanisms of wave propagation and to further enhance the monitoring capabilities of ultrasound. In this paper we review the computational studies of ultrasound wave propagation in intact and healing bones. More >

Displaying 1-10 on page 1 of 18. Per Page