Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Theoretical and Experimental Analysis of Heat Transfer and Condensation in Micro-Ribbed Tubes

    Daoming Shen1,*, Jinhong Xia1, Chao Gui1, Songtao Xue2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1411-1424, 2023, DOI:10.32604/fdmp.2023.024924 - 30 January 2023

    Abstract The thermal transmission coefficient for a micro-ribbed tube has been determined using theoretical relationships and the outcomes of such calculations have been compared with experiments conducted using a R1234yf refrigerant undergoing condensation. In particular four theoretical single-phase flow and three multi-phase flow models have been used in this regard. The experimental results show that: the Oliver et al. criterion equation overestimates the experimental results as its accuracy is significantly affected by the specific conditions realized inside micro-fin tubes; the Miyara et al. criterion equation prediction error is less than 15%; the Cavallini et al. approach More >

  • Open Access

    ARTICLE

    Title Supersonic Condensation and Separation Characteristics of CO2-Rich Natural Gas under Different Pressures

    Yong Zheng1, Lei Zhao1, Yujiang Wang1, Feng Chang1, Weijia Dong2,*, Xinying Liu2, Yunfei Li2, Xiaohan Zhang2, Ziyuan Zhao3

    Energy Engineering, Vol.120, No.2, pp. 529-540, 2023, DOI:10.32604/ee.2023.022765 - 29 November 2022

    Abstract Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO2 (carbon dioxide) content. The structures of the Laval nozzle and the supersonic separator were designed, and the mathematical models of supersonic condensation and swirling separation for CO2-CH4 mixture gas were established. The supersonic condensation characteristics of CO2 in natural gas and the separation characteristics of condensed droplets under different inlet pressures were studied. The results show that higher inlet pressure results in a larger droplet radius and higher liquid phase mass fraction; additionally, the influence of centrifugal force More >

  • Open Access

    ARTICLE

    Modeling of Heat Transfer and Steam Condensation Inside a Horizontal Flattened Tube

    M. Gh. Mohammed Kamil1,*, M. S. Kassim1, R. A. Mahmood2,3, L. AZ Mahdi4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 985-998, 2022, DOI:10.32604/fdmp.2022.018938 - 06 April 2022

    Abstract This work investigates the steam condensation phenomena in an air-cooled condenser. The considered horizontal flattened tube has a 30 mm hydraulic diameter, and its length is a function of the steam quality with a limit value between 0.95 and 0.05. The mass flow rate ranges from 4 to 40 kg/m2.s with a saturated temperature spanning an interval from 40°C to 80°C. A special approach has been implemented using the Engineering Equation Solver (EES) to solve a series of equations for the two-phase flow pattern and the related heat transfer coefficients. A wavy-stratified structure of the two-phase flow More >

  • Open Access

    ARTICLE

    SOINN-Based Abnormal Trajectory Detection for Efficient Video Condensation

    Chin-Shyurng Fahn1, Chang-Yi Kao2,*, Meng-Luen Wu3, Hao-En Chueh4

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 451-463, 2022, DOI:10.32604/csse.2022.022368 - 04 January 2022

    Abstract With the evolution of video surveillance systems, the requirement of video storage grows rapidly; in addition, safe guards and forensic officers spend a great deal of time observing surveillance videos to find abnormal events. As most of the scene in the surveillance video are redundant and contains no information needs attention, we propose a video condensation method to summarize the abnormal events in the video by rearranging the moving trajectory and sort them by the degree of anomaly. Our goal is to improve the condensation rate to reduce more storage size, and increase the accuracy More >

  • Open Access

    ARTICLE

    STUDY ON SUPERSONIC CONDENSATION AND INFLUENCING FACTORS OF NATURAL GAS WITH CARBON DIOXIDE

    Rongge Xiaoa,*, Shuaishuai Jina, Xin Fengb, Peng Zhangc, Zheng Daic

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-7, 2021, DOI:10.5098/hmt.16.25

    Abstract With the increasing production and use of natural gas, the supersonic nozzle has become focus of the impurity removal research. In this paper, the modified classical nucleation model is used as the condensation nucleation model, and the Gyarmathy growth model is selected as the droplet growth model. Based on the assumption of no phase slip and Eulerian two fluid model, the flow control equation of wet natural gas is established. By giving the selection criteria as a turbulence equation, the SRK real gas equation is used to carry out the corresponding numerical simulation. The required More >

  • Open Access

    ARTICLE

    A COMPARISON OF THE EQUILIBRIUM AND THE DROPLETS BASED NON-EQUILIBRIUM COMPRESSIBLE PHASE CHANGE SOLVERS FOR CONDENSATION OF CARBON DIOXIDE INSIDE NOZZLES

    Kapil Dev Choudhary, Shyam Sunder Yadav , Mani Sankar Dasgupta

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-10, 2021, DOI:10.5098/hmt.16.14

    Abstract In the current work, we simulate the condensation of supercritical CO2 during its high speed flow inside two different converging-diverging nozzles. We use the homogeneous equilibrium method and the classical nucleation theory based non-equilibrium phase change model for this purpose. The simulation results indicate significant influence of the nozzle inlet condition, nozzle shape and the fluid thermophysical behaviour on the nonequilibrium conditions prevailing inside the nozzles. We observe very low, ∼0.15 K, supercooling for the flow of CO2 inside the Claudio Lettieri nozzle compared to the supercooling of ∼3 K observed for the Berana nozzle. Very… More >

  • Open Access

    ARTICLE

    DIRECT SIMULATIONS OF BIPHILIC-SURFACE CONDENSATION: OPTIMIZED SIZE EFFECTS

    Zijie Chena , Sanat Modaka, Massoud Kavianya,* , Richard Bonnerb

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-11, 2020, DOI:10.5098/hmt.14.1

    Abstract In dropwise condensation on vertical surface, droplets grow at nucleation sites, coalesce and reach the departing diameter. In biphilic surfaces, when the hydrophobic domain is small, the maximum droplet diameter is controlled by the shortest dimension where the droplets merge at the boundary. Through direct numerical simulations this size-effect heat transfer coefficient enhancement is calculated. Then the 1-D biphilic surface is optimized considering the size-dependent hydrophilic domain partial flooding (directly simulated as a liquid rivulet and using the capillary limit), the subcooling (heat flux) and condenser length effects. The predicted performance is in good agreement More >

  • Open Access

    Experimental Analysis of the Performances of Unit Refrigeration Systems Based on Parallel Compressors with Consideration of the Volumetric and Isentropic Efficiency

    Daoming Shen1,2,*, Chao Gui1, Jinhong Xia1, Songtao Xue2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 489-500, 2020, DOI:10.32604/fdmp.2020.08969 - 25 May 2020

    Abstract The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio. Moreover, the following influential factors have been taken into account: evaporation temperature, condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor. The following quantities have been selected as the unit performance measurement indicators: refrigeration capacity, energy efficiency ratio (COP), compressor power consumption, and refrigerant flow rate. The experimental results indicate that the system refrigeration capacity and COP decrease with a More >

  • Open Access

    ARTICLE

    Fragrant Microcapsules Based on β-Cyclodextrin for Cosmetotextile Application

    Maroua Ben Abdelkader1,2,*, Nedra Azizi1, Ayda Baffoun3, Yves Chevalier2, Mustapha Majdoub1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1347-1362, 2019, DOI:10.32604/jrm.2019.07926

    Abstract Microencapsulation of neroline inside microcapsules having a polyurethane shell based on β-cyclodextrin (β-CD) and hexane diisocyanate was performed by interfacial polycondensation. The polyol nature of β-CD caused tight crosslinking of microcapsules wall. Microcapsules of neroline were characterized for their chemical composition and structure of the polyurethane shell by FTIR spectroscopy, thermogravimetric analysis, optical and electron microscopy, light scattering and electrophoresis measurements. Core content and encapsulation yield were 15% and 60%, respectively. Spherical microcapsules of mean diameter 29 μm were slightly cationic with an isoelectric point of 6.3. Neroline-loaded microcapsules were fixed on cotton fabric using More >

  • Open Access

    ABSTRACT

    The Improved Condensation Heat Transfer Models on Homogeneous and Heterogeneous Surfaces

    Jian Xie*, Cong Liang, Qingting She, Jinliang Xu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 157-157, 2019, DOI:10.32604/icces.2019.05222

    Abstract Recently, micro/nano structured surfaces with various wettabilities have been developed to enhance condensation heat transfer. Here, two improved condensation heat transfer models were proposed to guide design of these surfaces. The first model deals with condensation on homogeneous wettability surface with nono-pillars. Compared with the classical model, the improved model behaves three features: (1) The linking from surface wettability to nano-pillars parameters is established; (2) The nano-porous thermal resistance under condensate droplets is considered; (3) The transition criteria of different droplet detachment modes including sliding, rolling and jumping is incorporated. The nano-pillars are found to… More >

Displaying 11-20 on page 2 of 26. Per Page