Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (822)
  • Open Access

    ARTICLE

    Audio-Text Multimodal Speech Recognition via Dual-Tower Architecture for Mandarin Air Traffic Control Communications

    Shuting Ge1,2, Jin Ren2,3,*, Yihua Shi4, Yujun Zhang1, Shunzhi Yang2, Jinfeng Yang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3215-3245, 2024, DOI:10.32604/cmc.2023.046746

    Abstract In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal… More >

  • Open Access

    ARTICLE

    Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control

    Ximin Cao*, Xinglong Chen, He Huang, Yanchi Zhang, Qifan Huang

    Energy Engineering, Vol.121, No.4, pp. 1067-1089, 2024, DOI:10.32604/ee.2023.046783

    Abstract Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals. Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system, a multi-time scale optimal scheduling strategy based on model predictive control (MPC) is proposed under the consideration of load optimization. First, load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature, and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost. Second, considering inter-day to… More >

  • Open Access

    ARTICLE

    Intelligent Sensing and Control of Road Construction Robot Scenes Based on Road Construction

    Zhongping Chen, Weigong Zhang*

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 111-124, 2024, DOI:10.32604/sdhm.2023.043563

    Abstract Automatic control technology is the basis of road robot improvement, according to the characteristics of construction equipment and functions, the research will be input type perception from positioning acquisition, real-world monitoring, the process will use RTK-GNSS positional perception technology, by projecting the left side of the earth from Gauss-Krueger projection method, and then carry out the Cartesian conversion based on the characteristics of drawing; steering control system is the core of the electric drive unmanned module, on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles, the steering system key components such as… More >

  • Open Access

    ARTICLE

    Research on Optimal Preload Method of Controllable Rolling Bearing Based on Multisensor Fusion

    Kuosheng Jiang1, Chengrui Han1, Yasheng Chang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3329-3352, 2024, DOI:10.32604/cmes.2024.046729

    Abstract Angular contact ball bearings have been widely used in machine tool spindles, and the bearing preload plays an important role in the performance of the spindle. In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties, a roller bearing preload test method based on the improved D-S evidence theory multi-sensor fusion method was proposed. First, a novel controllable preload system is proposed and evaluated. Subsequently, multiple sensors are employed to collect data on the bearing parameters during preload application. Finally, a multisensor fusion algorithm is used to make predictions, and a… More >

  • Open Access

    REVIEW

    A Review of the Tuned Mass Damper Inerter (TMDI) in Energy Harvesting and Vibration Control: Designs, Analysis and Applications

    Xiaofang Kang1,2,*, Qiwen Huang1, Zongqin Wu1, Jianjun Tang1, Xueqin Jiang1, Shancheng Lei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2361-2398, 2024, DOI:10.32604/cmes.2023.043936

    Abstract Tuned mass damper inerter (TMDI) is a device that couples traditional tuned mass dampers (TMD) with an inertial device. The inertial device produces resistance proportional to the relative acceleration at its two ends through its “inertial” constant. Due to its unique mechanical properties, TMDI has received widespread attention and application in the past twenty years. As different configurations are required in different practical situations, TMDI is still active in the research on vibration control and energy harvesting in structures. This paper provides a comprehensive review of the research status of TMDI. This work first examines the generation and important vibration… More >

  • Open Access

    ARTICLE

    A Blockchain and CP-ABE Based Access Control Scheme with Fine-Grained Revocation of Attributes in Cloud Health

    Ye Lu1,*, Tao Feng1, Chunyan Liu2, Wenbo Zhang3

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2787-2811, 2024, DOI:10.32604/cmc.2023.046106

    Abstract The Access control scheme is an effective method to protect user data privacy. The access control scheme based on blockchain and ciphertext policy attribute encryption (CP–ABE) can solve the problems of single—point of failure and lack of trust in the centralized system. However, it also brings new problems to the health information in the cloud storage environment, such as attribute leakage, low consensus efficiency, complex permission updates, and so on. This paper proposes an access control scheme with fine-grained attribute revocation, keyword search, and traceability of the attribute private key distribution process. Blockchain technology tracks the authorization of attribute private… More >

  • Open Access

    ARTICLE

    The Effects of Thickness and Location of PCM on the Building’s Passive Temperature-Control–A Numerical Study

    Zhengrong Shi1,3, Jie Ren1, Tao Zhang1,3,*, Yanming Shen2,*

    Energy Engineering, Vol.121, No.3, pp. 681-702, 2024, DOI:10.32604/ee.2023.045238

    Abstract Building energy consumption and building carbon emissions both account for more than 20% of their total national values in China. Building employing phase change material (PCM) for passive temperature control shows a promising prospect in meeting the comfort demand and reducing energy consumption simultaneously. However, there is a lack of more detailed research on the interaction between the location and thickness of PCM and indoor natural convection, as well as indoor temperature distribution. In this study, the numerical model of a passive temperature-controlled building integrating the developed PCM module is established with the help of ANSYS. In which, the actual… More > Graphic Abstract

    The Effects of Thickness and Location of PCM on the Building’s Passive Temperature-Control–A Numerical Study

  • Open Access

    ARTICLE

    Multi-Time Scale Operation and Simulation Strategy of the Park Based on Model Predictive Control

    Jun Zhao*, Chaoying Yang, Ran Li, Jinge Song

    Energy Engineering, Vol.121, No.3, pp. 747-767, 2024, DOI:10.32604/ee.2023.042806

    Abstract Due to the impact of source-load prediction power errors and uncertainties, the actual operation of the park will have a wide range of fluctuations compared with the expected state, resulting in its inability to achieve the expected economy. This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control (MPC). In the day-ahead stage, an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min. In… More >

  • Open Access

    ARTICLE

    Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System

    Laith Abualigah1,2,3,4,5,6,*, Serdar Ekinci7, Davut Izci7,8, Raed Abu Zitar9

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 169-183, 2023, DOI:10.32604/iasc.2023.040291

    Abstract Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability. This study proposes a novel approach for designing a fractional order proportional-integral-derivative (FOPID) controller that utilizes a modified elite opposition-based artificial hummingbird algorithm (m-AHA) for optimal parameter tuning. Our approach outperforms existing optimization techniques on benchmark functions, and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision. Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and… More >

  • Open Access

    ARTICLE

    Placenta-derived mesenchymal stem cells attenuate secondary brain injury after controlled cortical impact in rats by inhibiting matrix metalloproteinases

    PING YANG1,2,3, YUANXIANG LAN1,2, ZHONG ZENG1,2, YAN WANG1,2, HECHUN XIA1,2,*

    BIOCELL, Vol.48, No.1, pp. 149-162, 2024, DOI:10.32604/biocell.2023.042367

    Abstract Background: As a form of biological therapy, placenta-derived mesenchymal stem cells (PDMSCs) exhibit considerable promise in addressing the complex pathological processes of traumaticbrain injury (TBI) due to their multi-target and multi-pathway mode of action. Material & Methods: This study investigates the protective mechanisms and benefits of PDMSCs in mitigating the effects of controlled cortical impact (CCI) in rats and glutamate-induced oxidative stress injury in HT22 cells in vitro. Our primary objective is to provide evidence supporting the clinical application of PDMSCs. Results: In the in vivo arm of our investigation, we observed a swift elevation of matrix metalloproteinase-9 (MMP-9) in… More > Graphic Abstract

    Placenta-derived mesenchymal stem cells attenuate secondary brain injury after controlled cortical impact in rats by inhibiting matrix metalloproteinases

Displaying 1-10 on page 1 of 822. Per Page