Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    MFCCT: A Robust Spectral-Temporal Fusion Method with DeepConvLSTM for Human Activity Recognition

    Rashid Jahangir1,*, Nazik Alturki2, Muhammad Asif Nauman3, Faiqa Hanif1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071574 - 09 December 2025

    Abstract Human activity recognition (HAR) is a method to predict human activities from sensor signals using machine learning (ML) techniques. HAR systems have several applications in various domains, including medicine, surveillance, behavioral monitoring, and posture analysis. Extraction of suitable information from sensor data is an important part of the HAR process to recognize activities accurately. Several research studies on HAR have utilized Mel frequency cepstral coefficients (MFCCs) because of their effectiveness in capturing the periodic pattern of sensor signals. However, existing MFCC-based approaches often fail to capture sufficient temporal variability, which limits their ability to distinguish… More >

  • Open Access

    ARTICLE

    IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare

    Subrata Kumer Paul1,2, Abu Saleh Musa Miah3,4, Rakhi Rani Paul1,2, Md. Ekramul Hamid2, Jungpil Shin4,*, Md Abdur Rahim5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2513-2530, 2025, DOI:10.32604/cmc.2025.063563 - 03 July 2025

    Abstract The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing Medical-Related Human Activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method tailored for MRHA detection, leveraging multi-stage deep… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Method for Forecasting Reservoir Water Level from Sentinel-2 Satellite Images

    Hoang Thi Minh Chau1,2,3, Tran Thi Ngan4,*, Nguyen Long Giang5, Tran Manh Tuan6, Tran Kim Chau7

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4915-4937, 2025, DOI:10.32604/cmc.2025.062784 - 19 May 2025

    Abstract Global climate change, along with the rapid increase of the population, has put significant pressure on water security. A water reservoir is an effective solution for adjusting and ensuring water supply. In particular, the reservoir water level is an essential physical indicator for the reservoirs. Forecasting the reservoir water level effectively assists the managers in making decisions and plans related to reservoir management policies. In recent years, deep learning models have been widely applied to solve forecasting problems. In this study, we propose a novel hybrid deep learning model namely the YOLOv9_ConvLSTM that integrates YOLOv9,… More >

  • Open Access

    ARTICLE

    A Combination Prediction Model for Short Term Travel Demand of Urban Taxi

    Mingyuan Li1,*, Yuanli Gu1, Qingqiao Geng2, Hongru Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3877-3896, 2024, DOI:10.32604/cmc.2024.047765 - 20 June 2024

    Abstract This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors. The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Convolutional Long Short Term Memory Neural Network (ConvLSTM) to predict short-term taxi travel demand. The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components, capturing sequence characteristics at different time scales and frequencies. Based on the sample entropy value of components, secondary processing of more… More >

  • Open Access

    ARTICLE

    Optimized U-Net Segmentation and Hybrid Res-Net for Brain Tumor MRI Images Classification

    R. Rajaragavi1,*, S. Palanivel Rajan2

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 1-14, 2022, DOI:10.32604/iasc.2022.021206 - 26 October 2021

    Abstract A brain tumor is a portion of uneven cells, need to be detected earlier for treatment. Magnetic Resonance Imaging (MRI) is a routinely utilized procedure to take brain tumor images. Manual segmentation of tumor is a crucial task and laborious. There is a need for an automated system for segmentation and classification for tumor surgery and medical treatments. This work suggests an efficient brain tumor segmentation and classification based on deep learning techniques. Initially, Squirrel search optimized bidirectional ConvLSTM U-net with attention gate proposed for brain tumour segmentation. Then, the Hybrid Deep ResNet and Inception More >

Displaying 1-10 on page 1 of 5. Per Page