Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Clostridium butyricum MIYAIRI 588 Reduces Colorectal Adenomatous Polyp Recurrence: A Randomized Crossover Trial

    Jiunn-Wei Wang1,2,3, Wen-Hung Hsu2,3,4, Fang-Jung Yu2,3, Fu-Chen Kuo5, Chung-Jung Liu3,6, Chao-Hung Kuo1,2,3, Jaw-Yuan Wang7,8, Ming-Hong Lin9,*, Deng-Chyang Wu1,2,3,*

    Oncology Research, Vol.33, No.12, pp. 3907-3922, 2025, DOI:10.32604/or.2025.070432 - 27 November 2025

    Abstract Objectives: Colorectal adenomatous polyps frequently recur after removal and are precursors to colorectal cancer, highlighting the need for effective preventive strategies. This study evaluated the efficacy of probiotic Clostridium butyricum MIYAIRI 588 (CBM588) in preventing colorectal adenoma recurrence in high-risk patients. Methods: We conducted a randomized, single-blind, two-year crossover trial in patients with a history of adenomatous polyps. Participants received CBM588 in either the first or second year, with the alternate year as observation, and underwent annual surveillance colonoscopies. Outcomes (adenoma recurrence and polyp counts) were analyzed by intention-to-treat (ITT) and per-protocol (PP) approaches. Results: A total… More >

  • Open Access

    ARTICLE

    Handling Stagnation in Differential Evolution Using Elitism Centroid-Based Operations

    Li Ming Zheng, Jun Ting Luo*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2473-2494, 2025, DOI:10.32604/cmc.2025.063347 - 03 July 2025

    Abstract Differential evolution (DE) algorithms are simple and efficient evolutionary algorithms that perform well in various optimization problems. Unfortunately, they inevitably stagnate when differential evolutionary algorithms are used to solve complex problems (e.g., real-world artificial neural network (ANN) training problems). To resolve this issue, this paper proposes a framework based on an efficient elite centroid operator. It continuously monitors the current state of the population. Once stagnation is detected, two dedicated operators, centroid-based mutation (CM) and centroid-based crossover (CX), are executed to replace the classical mutation and binomial crossover operations in DE. CM and CX are… More >

  • Open Access

    ARTICLE

    Optimizing Feature Selection by Enhancing Particle Swarm Optimization with Orthogonal Initialization and Crossover Operator

    Indu Bala*, Wathsala Karunarathne, Lewis Mitchell

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 727-744, 2025, DOI:10.32604/cmc.2025.065706 - 09 June 2025

    Abstract Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets, significantly increasing data complexity and dimensionality in medical diagnostics. Efficient feature selection methods are critical for improving diagnostic accuracy, reducing computational costs, and enhancing the interpretability of predictive models. Particle Swarm Optimization (PSO), a widely used metaheuristic inspired by swarm intelligence, has shown considerable promise in feature selection tasks. However, conventional PSO often suffers from premature convergence and limited exploration capabilities, particularly in high-dimensional spaces. To overcome these limitations, this study proposes an enhanced PSO framework incorporating Orthogonal… More >

  • Open Access

    ARTICLE

    Numerical Treatments for a Crossover Cholera Mathematical Model Combining Different Fractional Derivatives Based on Nonsingular and Singular Kernels

    Seham M. AL-Mekhlafi1,*, Kamal R. Raslan2, Khalid K. Ali2, Sadam. H. Alssad2,3, Nehaya R. Alsenaideh4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1927-1953, 2025, DOI:10.32604/cmes.2025.063971 - 30 May 2025

    Abstract This study introduces a novel mathematical model to describe the progression of cholera by integrating fractional derivatives with both singular and non-singular kernels alongside stochastic differential equations over four distinct time intervals. The model incorporates three key fractional derivatives: the Caputo-Fabrizio fractional derivative with a non-singular kernel, the Caputo proportional constant fractional derivative with a singular kernel, and the Atangana-Baleanu fractional derivative with a non-singular kernel. We analyze the stability of the core model and apply various numerical methods to approximate the proposed crossover model. To achieve this, the approximation of Caputo proportional constant fractional… More >

  • Open Access

    ARTICLE

    Solving the Generalized Traveling Salesman Problem Using Sequential Constructive Crossover Operator in Genetic Algorithm

    Zakir Hussain Ahmed1,*, Maha Ata Al-Furhood2, Abdul Khader Jilani Saudagar3, Shakir Khan4

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1113-1131, 2024, DOI:10.32604/csse.2024.053574 - 13 September 2024

    Abstract The generalized travelling salesman problem (GTSP), a generalization of the well-known travelling salesman problem (TSP), is considered for our study. Since the GTSP is NP-hard and very complex, finding exact solutions is highly expensive, we will develop genetic algorithms (GAs) to obtain heuristic solutions to the problem. In GAs, as the crossover is a very important process, the crossover methods proposed for the traditional TSP could be adapted for the GTSP. The sequential constructive crossover (SCX) and three other operators are adapted to use in GAs to solve the GTSP. The effectiveness of GA using More >

  • Open Access

    ARTICLE

    SFGA-CPA: A Novel Screening Correlation Power Analysis Framework Based on Genetic Algorithm

    Jiahui Liu1,2, Lang Li1,2,*, Di Li1,2, Yu Ou1,2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4641-4657, 2024, DOI:10.32604/cmc.2024.051613 - 20 June 2024

    Abstract Correlation power analysis (CPA) combined with genetic algorithms (GA) now achieves greater attack efficiency and can recover all subkeys simultaneously. However, two issues in GA-based CPA still need to be addressed: key degeneration and slow evolution within populations. These challenges significantly hinder key recovery efforts. This paper proposes a screening correlation power analysis framework combined with a genetic algorithm, named SFGA-CPA, to address these issues. SFGA-CPA introduces three operations designed to exploit CPA characteristics: propagative operation, constrained crossover, and constrained mutation. Firstly, the propagative operation accelerates population evolution by maximizing the number of correct bytes… More >

  • Open Access

    ARTICLE

    Numerical Treatments for Crossover Cancer Model of Hybrid Variable-Order Fractional Derivatives

    Nasser Sweilam1, Seham Al-Mekhlafi2,*, Aya Ahmed3, Ahoud Alsheri4, Emad Abo-Eldahab3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1619-1645, 2024, DOI:10.32604/cmes.2024.047896 - 20 May 2024

    Abstract In this paper, two crossover hybrid variable-order derivatives of the cancer model are developed. Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators. The existence, uniqueness, and stability of the proposed model are discussed. Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models. Comparative studies with generalized fifth-order Runge-Kutta method are given. Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented. We have showcased the efficiency of the proposed More >

  • Open Access

    ARTICLE

    Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem

    Zakir Hussain Ahmed1,*, Habibollah Haron2, Abdullah Al-Tameem3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2399-2425, 2024, DOI:10.32604/cmc.2024.049704 - 15 May 2024

    Abstract Genetic algorithms (GAs) are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems. A simple GA begins with a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes. It uses a crossover operator to create better offspring chromosomes and thus, converges the population. Also, it uses a mutation operator to explore the unexplored areas by the crossover operator, and thus, diversifies the GA search space. A combination of crossover and mutation operators… More >

  • Open Access

    ARTICLE

    A Strengthened Dominance Relation NSGA-III Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem

    Liang Zeng1,2, Junyang Shi1, Yanyan Li1, Shanshan Wang1,2,*, Weigang Li3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 375-392, 2024, DOI:10.32604/cmc.2023.045803 - 30 January 2024

    Abstract The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems. It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives. The Non-dominated Sorting Genetic Algorithm III (NSGA-III) is an effective approach for solving the multi-objective job shop scheduling problem. Nevertheless, it has some limitations in solving scheduling problems, including inadequate global search capability, susceptibility to premature convergence, and challenges in balancing convergence and diversity. To enhance its performance, this paper introduces a strengthened dominance relation NSGA-III… More >

  • Open Access

    ARTICLE

    Enhancing Healthcare Data Security and Disease Detection Using Crossover-Based Multilayer Perceptron in Smart Healthcare Systems

    Mustufa Haider Abidi*, Hisham Alkhalefah, Mohamed K. Aboudaif

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 977-997, 2024, DOI:10.32604/cmes.2023.044169 - 30 December 2023

    Abstract The healthcare data requires accurate disease detection analysis, real-time monitoring, and advancements to ensure proper treatment for patients. Consequently, Machine Learning methods are widely utilized in Smart Healthcare Systems (SHS) to extract valuable features from heterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities. These methods are employed across different domains that are susceptible to adversarial attacks, necessitating careful consideration. Hence, this paper proposes a crossover-based Multilayer Perceptron (CMLP) model. The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on the medical… More >

Displaying 1-10 on page 1 of 19. Per Page