Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Effect of PEG Incorporation on Physicochemical and in vitro Degradation of PLLA/PDLLA Blends: Application in Biodegradable Implants

    Mochamad Chalid1,*, Gifrandy Gustiraharjo1, Azizah Intan Pangesty1, Alyssa Adyandra1, Yudan Whulanza2, Sugeng Supriadi2

    Journal of Renewable Materials, Vol.11, No.7, pp. 3043-3056, 2023, DOI:10.32604/jrm.2023.026788

    Abstract Polyethylene glycol (PEG) was added at different concentrations to the blend of poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid)(PDLLA) to tailor the properties. The differential scanning calorimetry (DSC) measurement showed that all blends were miscible due to shifting a single glass transition temperature into a lower temperature for increasing PEG content. The DSC, FTIR, and XRD results implied the crystallinity enhancement for PEG content until 8 wt%, then decreased at 12 wt% PEG. The XRD result indicated the homo crystalline phase formation in all blends and no stereocomplex crystal. The in vitro degradation study indicated that… More > Graphic Abstract

    Effect of PEG Incorporation on Physicochemical and <i>in vitro</i> Degradation of PLLA/PDLLA Blends: Application in Biodegradable Implants

  • Open Access

    ARTICLE

    Cellulose Nanocrystal from Washingtonia Fibre and Its Characterization

    Mohammad Jawaid1, Lau Kia Kian1, Hassan Fouad2, Ramzi Khiari3,4,5,*, Othman Y. Alothman6, Mohamed Hashem7

    Journal of Renewable Materials, Vol.10, No.6, pp. 1459-1470, 2022, DOI:10.32604/jrm.2022.018415

    Abstract Cellulose nanocrystal (CNC) is a biomaterial derived from plant lignocellulosic components, widely applied in various industrial fields. Concurrently, with the growth of awareness in developing green nanomaterial, the explored Washingtonia fibre could be alternative biomass for obtaining CNC products. In the present work, different acid concentrations of 5%, 15%, and 25% hydrochloric solutions were employed to produce CNCs from Washingtonia fibre. With the chemical treatments, the yield of the CNC product was successfully retained at 21.6%−25.1%. Individually separated and needle-shaped CNC particles could be observed under the microscopic viewing with the increased acid concentrations. From… More > Graphic Abstract

    Cellulose Nanocrystal from <i>Washingtonia</i> Fibre and Its Characterization

  • Open Access

    ARTICLE

    Effect of Alkali Treatment on Saharan aloe vera cactus Fibre Properties and Optimization of Process by Response Surface Methodology

    GOBI NALLATHAMBI, BHARGAVI RAM THIMMIAH*

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 189-200, 2020, DOI:10.32381/JPM.2020.37.3-4.6

    Abstract The aim of this study is to optimize the process parameters of alkali treated Saharan aloe vera cactus fibres using of Box-behnken experimental design. The Saharan aloe vera cactus fibres were treated with different concentration of NaOH, soaking time and temperature which affect the properties of fibres and plays main role in removal of lignin, hemicellulose, pectin and wax content. The chemical composition of untreated and treated fibres was analyzed by standard methods. XRD result shows the improvement in the crystallinity index of fibres due to alkali treatment. ATR-FTIR analysis shows that hemicellulose and lignin More >

  • Open Access

    Examination of a Biobased Carbon Nucleating Agent on Poly(lactic acid) Crystallization

    Michael R. Snowdon1,2, Amar K. Mohanty1,2, Manjusri Misra1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 94-105, 2017, DOI:10.7569/JRM.2017.634134

    Abstract This article assesses the performance of a biobased carbon as a nucleator using common techniques to stimulate poly(lactic acid) crystallization and enhance the thermal stability of PLA during injection molding. The combination of a biodegradable plasticizer, poly(ethylene glycol) (PEG), along with biobased carbon-rich pyrolyzed biomass char residue and an industrially available microcrystalline talc, were tested for nucleating agent capabilities at additions of 10 wt%. Differential scanning calorimetry (DSC) data demonstrated that the inclusion of the plasticizer could increase the PLA crystalline content with further improvements when nucleating agent was present. With a higher mold temperature, More >

  • Open Access

    ARTICLE

    Depolymerization of Post-Consumer Polylactic Acid Products

    David Grewell1,*, Gowrishankar Srinivasan1, Eric Cochran2

    Journal of Renewable Materials, Vol.2, No.3, pp. 157-165, 2014, DOI:10.7569/JRM.2014.634112

    Abstract Presented in this study is a novel recycling strategy for poly(lactic acid) (PLA) in which the depolymerization is rapidly promoted by the base-catalyzed hydrol-/alcohol-ysis of the terminal ester bonds under mild conditions. Post-consumer PLA water bottles were cut into approximately 6 x 2 mm plastic chips and heated to 50–60o C in water, ethanol, or methanol as the depolymerization medium. A variety of carbonate salts and alkaline metal oxides were screened as potential catalysts. High-power ultrasound was also investigated as a means to accelerate the PLA decomposition. Both mass loss and HPLC analysis of the More >

Displaying 1-10 on page 1 of 5. Per Page